LOAN DOCUMENT

PHOTOGRAPH THIS SHEET

DTS 77 copy /

LEVEL INVENTORY

WRDC -TR-90-562 4
Nov 1999

DTIC ACCESSION NUMBER

DISTRIBUTION STATEMENT A

AD-A227 826

Approved for public release;
Distribution Unlimited ‘

e

NTIS GRAAI

UNANNOUNCED
JUSTIFICATION

DISTRIBUTION STATEMENT

Gy 0CT251990

BY

- DISTRIBUTION/ &

[.vaasirry copes

HRPrPOo T=—3 HCOZP> o

SISTRIBUTION [AVAZLABAITY AND/OR SPECIAL
DATE ACCESSIONED
- Y
° 85 v
v DISTRIBUTION STAMP 2
DATE RETURNED
9 1+ .- 180
DATE RECEIVED IN DTIC REGISTERED OR CERTIFIED NUMBER
PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-FDAC
onic % 704 DOCUMENT PROCESRING SERET —m T

JUN 9

LOAN DOCUMENT

AD-A227 826

WRDC-TR-90-8024

GEOMETRIC MODELING APPLICATION INTERFACE PROGRAM

MODEL ACCESS SOFTWARE USER'S MANUAL

United Technologies Corporation
Pratt and Whitney

Government Products Division

P.0. Box 9600

West Palm Beach, Florida 33410-9600

NOVEMBER 1990

Final Report For Period August 1985 - March 1989

Approved for public release; distribution unlimited

MANUFACTURING TECHNOLOGY DIRECTORATE

WRIGHT RESEARCH AND DEVELOPMENT CENTER

AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as comveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the gemeral public, including
foreign nations.

This technical report has been reviewed and is approved for publica-

tion. .
Charles Gilman Walter H. Reimann, Chief
Project Manager Computer-Integrated Mfg. Branch

FOR THE COMMANDER

éa Awm"“\

BRUCE A. RASMUSSEN
Chief, Integration Technology Division
Manufacturing Technology Directorate

1f your address has changed, 1f you wish to be removed from our mailing
list, or 1f the addressee is no longer employed by your organization please
notify WRNC/MTT , WPAFB, OH 45433- 6533 to help us maintain a current
mailing list.

Copies of this report should not be returnmed unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

«

. UNCLASSIFIED
SECURITY CLASSIFICATION OF TRIS PAGE

) REPORT DOCUMENTATION PAGE

“6a. NAME OF PERFORMING ORGANIZATION |

United Technologies Corporation
Pratt & Whitney
Government Products Division

. L
(1f applicable)

(PeV)

| 7a. REPORT SECURITY CLASSIFICATION 0, RESTRICTIVE MARKI
Unclassified
a. 1 AU . RIBUTISN/AVA L
Approved for public release; distribution
~2b. OECLASSIFICATION/DOWNGRADING SCHEDULE is unlimited
{4, PERFORMING ORGANIZATION REPORT NUMBER(S) §. MONITORING ORGANIZATION REPORT NUWBER(S)
FR 20359 WRDC-TR-90-8024

8. 1 1
Wright Research and Development Center
Manufacturing Technology Directorate

"6c. ADDRESS (City, State and ZIP Lode)

P.0. Box 9600
West Palm Beach,
Florida 33410-9600

Ba. NAME OF FUNDING/SPONSORING
ORGANIZATION

(1f applicable)

8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

. AD ty, State and ZIP Code)
Wright-Patterson AFB OH 45433-6533

F33615-85-C-5122

B8c. ADDRESS (City, State and ZIP Code)

10. SOURCE OF FUNDING NOS.

1. TITLE (Include Security Classification)
GEOMETRIC MODELING APPLICATIONS INTERFACE PROGRAM

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
01.60 5602 6 74

12. PERSONAL AUTHOR(S)
D. Emmerson, C. Magnuson, C. Van Wie, R. Neldoefe, P.

Dorr

13a. TYPE OF REPQRT 13b. TIME COVERED
Final FROM_1 Aug 85 70_3) Mar 89

15. PAGE COUNT
195

14, DATE OF REPORT (Yr., Mo., Oay)
November 1990

6. SUPPLEMENTARY NOTATION

17. COSATI CODES
FIELD GROUP SUB. GR.

18. SUBJECT TERMS (Continue on reverse if necessary and identify

Geometric Modeling Applications Interface Program
Product Definition Data Interface
Turbine Biades and Disks

by block number)

This User's Manual provides a
Item (CPCI) identified as the
Contract F33615-85-C-5122.
capabilities.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

ide for the use of Model Access Software for the Computer Program Configuration
P (Geometric Modeling Applications Interface Program), U.S. Air Force
It includes descriptions of the Model Access Software and Name Value Interface

~20. DISTRIBUTION/AVATLABILTTY OF ABSTRACY

UNCLASSIFIED/UNLIMITED X_ SAME AS RPT. ___ DTIC USERS __

22a. WAME OF RESPONSIBLE INDIVIDUAL
David Judson

27, ABSTRACY SECURITY CLASSIFICATION

UNCLASSIFIED

22b. TELEPHONE NUMBER
(Include Area Code)
(513) 255-713N

22c. OFFICE SYMBOL
WRDC/MTI

DO FORM 1473, 83 APR

EOITION OF 1 JAN 73 IS OBSOLETE.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASS(FIED
1 TCATI THIS PAGE

18. Subject Terms (Continued)

Product Life Cycle
Engineerin
Manufacturing
Interface

Exchange Format

CAD

CAM

(]

181§

RFC

System Translator
Schema Manager

Model Access Software
Name/Value Interface

- UNCLASSIFIED

SECURTTY CLASSIFICATION OF THIS PAGE

EFOREWORD

This Model Access Software User's Manual describes wvork performed under
Air Force Contract F33615-85-C-5122, Geometric Modeling Applications
Interface Program (GMAP), covering the period 1 August 1985 to 31 July 1988.
This User's Manual provides a guide for the use of Model Access Software
under this contract which is sponsored by the Computer Integrated
Manufacturing Branch, Materials Laboratory, Air Force Systems Command, Wright
Air Force Base, Ohio 45433-6533. The GMAP Project Manager for the Air Force
is Mr. Charles Gilman.

The primary contractor is Pratt & Whitney, an operating unit of United
Technologies Corporation. Mr. Richard Lopatka is managing the GMAP project
at Pratt & Whitney. Ms. Linda Phillips is the Program Integrator. Mr. John
Hamill i{s the Deputy Program Manager.

McDonnell Aircraft Company is the subcontractor responsible for the Model
Access Software work., Mr. Jerry Weiss is the GMAP Program Manager at
McDonnell Aircraft and Mr. Herdb Ryan is the Deputy Program Manager.

ROTE: The number and date in the upper right corner of each page in this
document indicate that it has been prepared in accordance to the
ICAM CM Life Cycle Documentation requirements for a Configuration
Item (CI).

SECTION

SECTION

SECTION

SECTIOR

CI UM560240031U

July 1989

IABLE OF CONIENTS

. scoPE'..o‘Qoooicq.o..-c.o.ooo-..coc.o-o.o.‘oo‘.cc.ooooo.o

1 Identific‘tiono'.0-0000.0.....-.0..o.-...noooocoooooaoc
.2 Introduction......--ooo.o..-...-.....-o.o.....o........
03 other systeﬂ Hanuals.oooo..c.oo'c.o.nocouilooooocno-o..
04

Apptoachcoon-o.n-no..o..o.co"to.t'o.o-o.oooo-.o-.u..co

umnnczs;.o.ono0.d..o".0.0000..000.000.’..oc-.o...o.on.

2.

2.1 Reference DOCUMENEB.cceccscescascssasccasccsscessasnsase

2.1-1 Hilitll’y-...........-.............-.................
2.1.2 Commercial. .ouveeseccocsrcoccscnnessnscsnsccsasanssns
2.1.3 Standards OrganizationS..ccccceccsccccccccscccccnnes
2.2 Terms and ACTONYMBecccccscccsosccsccsssasascscasscsscans

2.2.1 Terms Used In GMAP....ccectcesccvcscccacosssvccssces
2.2.2

Acronyms Used In GMAP....cecececccocccccnvocnosasaes

SYSTEM OVERVIEW...cccecsesccseasecsssseansescccsssssvcacae
System ArchitectuUre...cccccccccccsncaccnsccsncana ceeence

.1 System InterfaCeS.ccececrscvcccccvoscnssascocssascnnae

2 System Environment.....coceseceaacsscscscascsssncsas
Schema MANREer..cccveecsecovecconssesscsasccsccsascocces

.1 Physical SchemB..cceecceonscsessssccscsaoscrsovsscncs
EFQ.....00..l....0....'...0............‘.'...0.'l'..'.n
System Tranglator.ccecesccesscccscccencscsccrcssocovncns
Model Acces8 SOftWATC.ccccscccccsacccsvonccscnssnsvcnces
D.t. Itm...lto...lO.....‘.0..0...0....0...0.00...0
nntlty...".‘..OC..0....'.I.‘..‘.Q.O...c..o....

Li.t“...‘..'.......0.....IIO..Q...‘..“.I..Q..

1
2
Interface Parameter8..cccceccccscocsscscccncrsscncace
1 Data-Rame ParametersS....ccvcceccccccveascscacone
2 Data-Type ParamMeter8..ccoccscscccsccssssscennns
3 Formal Data TYDPeS..cccecccccccsacasccccccaans oe
Memory Manager.cccceceacscesocsevrosscscsoscscoranns

WICOOO.'.ll..l................ll‘....“'.l.Cl'.....i'.

4., MODEL ACCESS SOFTWARE (MAS) OPERATIONS

AND ENVIRORMENT .cccvcecccsassccvacscssansacsassansnsnnss
1 Introduction.cceecreccccccaseccconsssssnsacssasssacnnes
2 Infcialization/Deletion of the

MAS Working Form (WF)eeuiseveeascocosossosoccsccsnncnass
4.3 Entity OperationS.ccceccciccceccccncssssocccsavosanaans
4.3.1 Create OpeTatioNS . ccucceveccaccecrsacsascovasonsencs
4.3,2 Query OperationB.ecc.iccessccscacssncoacsnceonnssonss
4.3.3 Update Operations..ccceceececesnsccaccancccsnonsonas
4.3.4 Delete Operations..cieeeecetecsevrnccsccescssnannasnes

iv

uuuuuutlnuuwwuu
D DL WWWWWK

CI UM560240031U
July 1989

IABLE OF CONTERIS (contd.)

3.5 Activate OperationS.....cccocvescccsccoccasecces 4=21
3.6 Application Flag OperationS.....ccceceeacecccass 4-25
.4 LiSt OperationS..cceececcecascsccsencnscsossncseses 4-38
4.1 Create Operations -~ Application Lists........... 4-39
4.2 Query Operations -~ Application Lists
and Constituent LiSt8....ccccvvcencccscccccssecs #=54
4.4.3 Update Operations - Application Lists
.nd conltitllent LiStB.--....................... 4-61
o Update Operations - Application Lists Only...... 4-68
5 Boolean Operations - Application Lists
and Constituent Lists...ccccvveccoccccnccscosss 4-73
Delete Operations - Application Lists Only...... 4-77
Execute OperationsS..cccceceseccoccasscccscosesascss 4-82
General Purpose UtilitieS...cccveecccccoconcrasee. 4&-94
Special Purpose Utilities...ecocecccocccoccsccesces 4-99 °
IBM/MVS Environment.ccecceccccccecesccocsossscasass 4105
Compiling ConsiderationS.....ccccvceccccecccsess 4=105
Considerations When Using the XEQ
Routines (MAEXEQ, MALXEQ, MAKXEQ,
MAECXQ, MAEUXQ, MALSRT)::ccovscccossccccascsces 4=105
3 Linking ConsiderationsS..ccccceeecccccccscssesses 4-106
VAX/VMS Environment..cccceecccscccscscnssnssecssess 4-106
1 Compiling ConsiderationS...ccccscccccscsccsssces 4-106
2 Considerations When Using the XEQ
Routines (MAEXEQ, MALXEQ, MAKXEQ,
MAECXQ, MAEUXQ, MALSRT)ccccvceccscecccscsassss 4-107
4.9.3 Linking Considerations.....ccvecececcoscssssases 4-108

.
-]

> L LODLLLL
¢ e o o o o o
0000~ D

~N

SECTIOR

. WVALUB ImRFAcBQ0.00oco..oocco.aonooooooolo--oo

oveﬂiw-ooooc.-o........-.........-...........-eo

1

2 Direct QUEry/StOre@.ccicccccnccccsoscscacsocscsvsesnss
2.1 FUNCtioN.cceeecceccsnnoceccccosasaccccsssscnncns
2.2 Direct Query FOIMAt.cccsecececcccssccasacssscccncnaa
2.3 Direct Store FOIMAt..ccceececcncesnssssccscscsnssnns
3 Procedural QUerY..c.ccececceccccccssccassssssccnce
3.1 FUNCtioN.cctcescvscccncescccsvoncsnscsssanscscsne
.3.2 FOIMAL.ccccrecenecvncscsorsscarensscasscsccsncacnssnse
4
4
4
5
S
5

i
P bW

Q.IlU!U'IiﬂMU'UUI

|
NN

utilitle’...l.‘..0.............C.QO‘.I.!QI..O.'Q.Q
1 FUNCtiOoN. . ccoreerrecccsororscrscsesesssssassonne
2 Attribute Data Type Query Format...cccececvecses
IBM/MVS Environment....ccceceecscscsoscsoscccssvecs
1 Complling ConsiderationsS....ccccvvecececcsccnces
2 Include FlleS....cvceeveeceevvococoscnconnnsasana

Q'I'UlU't'ﬂU'U!Ul
O O O~

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPERDIX E

APPENDIX F

Cl UMS560240031U

July 1989

Linkage ConsiderationsS.....cccececececceccccccces
Processing Considerations.......ccccevneeeecaces
VAX/VMS Environment......ooeeccees teseacsssassssss
Compiling ConsiderationsS.....cvsceceeeesacescsass
Include FileS..cececcccocsosssssooscsncsscecsnns
Linkage ConsiderationsS...ccccceceeccccccccccnnea
Processing Considerations.....ceccececoccencenece

MODEL ACCESS SOFIWARE (MAS) CALLING

PAMTER mn INDEX......--ooco.-oooo.oo.ooc-o-oou
ALPHABETICAL MODEL ACCESS SOFTWARE (MAS)

ROUTINE INDEX............... ------ teveascssseresssnase
MODEL ACCESS SOFIWARE (MAS) RETURN CODE INDEX.......
GENERAL TECHNIQUES/GUIDELINES...ccccencncnsvconcsene
RUN-TIM EWIROMMQ.‘.t...ll.........l..l...'...l.

SWLE PROGRAMS....--.......-uoo..o-oo-'-.o-on‘toooo

N

B-1
C-1
D-1
E-1

F-1

CI UM560240031U
July 1989

OF S

Eigure Title = Page

3-1
3-2
4-1
4-2

GMAP/PDDI System Architecturf.cccecccceeceececocsccccccaases 3-2
LINE: An Entity With ConstituentS..ccccceceoscececscscaceacss 3-5
MAS Interface OperationS.....cccccecccsccscssocsacscscsocnnss 4-1
Execute Operation..ccccececccrescecsscsccacoscssoccscacscscenns 4-8

vii

CI UM560240031U
July 1989

LIST OF TABLES
Iable = Title Page

4-1 CREATE ROUTINES....ccctaecncescscccccacaccscscsssncoccosene . aa 4=5
4-2 QUERY ROUTINES..ceceeeessonccscsscssccscscscscsancsasosancees 4=8
4-3 UPDATE OPERATIONS...ccccncsocscscacsoccenacnsncnnscasansenses 4-12
4-4 DELETE RULES...ccceuccocscscsessscncssasvavcscccsccssnassanes 4=15
4-5 DELETE ROUTIRES...cccceccancececscccscccaccsscccacscsncsasnes 4-16
4-6 ACTIVATE ROUTINES...cecemcacrccsasccccancccsccacssescacacooses 4=21
4-7 APPLICATION FLAG OPERATIONS...ceccevvcctncecnsesccocncanasses 4-25
4-8 CREATE ROUTINES...ccecoescascccscocsocsaccacacnasscocsscnssse 4=39
4-9 QUERY OPERATIONS - APPLICATION AND

CONSTITUENT LISTS..vocccecacsccosccscacccscacscscsancasenacans 4-54
4-10 UPDATE OPERATIONS — APPLICATION ARD CONSTITUENT LISTS........ 4-61
4-11 UPDATE OPERATIORS ~ APPLICATION LISTS....ccccccecencccseacecss 4~68
4-12 BOOLEAN ROUTIRES.ccccecsscooscccseccscsnasosncescsssoscssoseece 4=73
4-13 DELETE ROUTINES ... cceccoveccscscsaccccccoscscocsscccscvssacnns 4=77
4-14 EXECUTE ROUTINES .ccsscecsecscocasacscsccsasoanscsnnsossoancse 4-B84
4-15 GENERAL PURPOSE UTILITIES..accccccccsccscaccoccaccncanssssoas 4=94°
4-16 SPECIAL PURPOSE UTILITIES.cccccccceccecnccccsossansesascnases 4=99

vii |,
\/(' ,

Cl1 UM560240031U
July 1989

SCOPE

1.1 JIdentification
This User's Manual provides a guide for the use of Model Access Software
developed for the Product Definition Data Interface (Project 5601) and the
Kame Value Interface software developed for the Geometric Modeling
Applications Interface Program. The Product Definition Data Interface
project was developed under Air Force Contract F33516-82-C-5036 and the
Geometric Modeling Applications Interface Program was developed 1 .der Air
Force Contract F33615-85-C-5122.
1.2 Introduction
Model Access Software capabilities documented in this manual include:
o Access Software Initialization
o Entity Operations

o List Operations.

NVI capabilities documented in this manual include:
o Direct Query/Store
o Procedural Query.
This software was developed on IBM 43xx and 308xx computers and migrated
to DEC VAX 11/780 and other computers. The environmental requirements are

described in Section 3.

This manual does not address local (native) system or computing
environment documentation.

This manual addresses IBM procedures and terminology only.

1.3 Other Svstem Manuals

An associated Operator’'s Manual (OM560240001U) describes the system
operation and installation procedures. Procedures are also included for

1-1

CI UM560240031U
July 1989

migrating the software from IBM/MVS to other computer systems (i.e., VAX).
The Operator's Manual is intended for use by computer operators and
programming personnel.

An associated Translator User's Manual (UM560240021U) is provided for
users of the System Translator, and a Schema Manager Users Manual
(UM560240011U) is provided for users of the Schema Manager.

The Software Components Product Specification (PS560240032U) provides

routine descriptions, data dictionary listings and system messages for system
maintenance purposes.

1.4 Approach

This User's Manual is divided into five main sections and six
appendices:

Section 1 - Scope of this document.

Section 2 - Reference documentation applicable to GMAP and this
document.

Section 3 - The PDDI/GMAP architecture at a high level and
introduction to the use of the Model Access Software.

Section 4 - Entity and List Operations needed to access the data
structures passed back to the Application program.

Section 5 - Description of the use of the Name Value Interface.

Appendices:

Appendix A - Model Access Software Calling Parameter Index

Appendix B - Alphabetical Model Access Software Routine Index

Appendix C - Model Access Software Return Code Index
Appendix D - General Techniques/Guidelines

Appendix E - Run Time Environment

Appendix F - Sample Programs.

1-2

Cl UM560240031U
July 1989

SECTION 2
REFERENCES

2.1 Reference Documents

The following technical reports, specifications, standards, and other
documents have been referred to or are relevant to this Model Access
Software User's Manual.

2.1.1 Militarv:

Integrated Computer Aided Manufacturing (ICAM) Architecture, Vol. 4,
Function Modeling Manual (IDEF@), USAF Report No. AFWAL-TR-81-4023,
June 1981.

Integrated Computer Aided Manufacturing (ICAM) Architecture, Vol. 5,
Information Modeling Manual (IDEFl1l), USAF Report No. AFWAL-TR-81-4023,
June 1981.

Integrated Computer Aided Manufacturing (ICAM) Documentation Standards,
IDS 150120000C, September 1983.

PDDI System Specification, Product Definition Data Interface (PDDI)
Project 5601, Contract F33516-82-5036, July 1984,

PDDI System Specification-Draft Standard, Product Definition Data
Interface (PDDI), Project 5601, Contract F33516-82-5036, July 1984,

Information Modeling Manual IDEF-Extended (IDEF1X) Integrated
Information Support System (IISS), ICAM Project 6201, Contract
F33615-80-C-5155, December 1985.

Interim Technical Report No. 1 (ITR560240001U)
"Geometric Modeling Applications Interface Program" February 1986
(Period 1 August 1985 - 31 October 1985).

Interim Technical Report No. 2 (ITR560240002U)
"Geometric Modeling Applications Interface Program" May 1986
(Period 1 November 1985 - 31 January 1986).

Geometric Modeling Applications Interface Program (GMAP) Scoping
Document, CI SD560240001U, May 1986.

Interim Technical Report No. 3 (ITR560240003U)

"Geometric Modeling Applications Interface Program” August 1986
(Period 1 February 1986 - 30 April 1986).

2-1

Cl UM560240031U
July 1989

Interim Technical Report No. 4 (ITR560240004U)
"Geometric Modeling Applications Interface Program" November 1986
(Period 1 May 1986 - 31 July 1986).

Geometric Modeling Applications Interface Program (GMAP) Needs Analysis
Document, CI NAD560240001U, November 1986.

Interim Technical Report No. 5 (ITR560240005U)
"Geometric Modeling Applications Interface Program" January 1987
(Period 1 August 1986 - 31 October 1986).

Geometric Modeling Applications Interface Program (GMAP) System
Requirements Document, CI SRD560240001U, February 1987.

Geometric Modeling Applications Interface Program (GMAP) State of the
Art Document, CI SAD560240001U, March 1987.

Interim Technical Report No. 6 (ITR560240006U)
"Geometric Modeling Applications Interface Program" May 1987
(Period 1 November 1986 - 31 January 1987)

Geometric Modeling Applications Interface Program (GMAP) System
Specification (Volumes I-IV), CI S58560240001U, July 1987

Interim Technical Report No. 7 (ITR560240007U)
"Geometric Modeling Applications Interface Program," August 1987
(Period 1 February 1987 - 30 April 1987).

Geometric Modeling Applications Interface Program (GMAP) System Design
Specification, CI SDS560240001U, November 1987.

Geometric Modeling Applications Interface Program (GMAP) to Retirement
for Cause Interface Development Specification, CI DS560240011U, November
1987.

Geometric Modeling Applications Interface Program (GMAP) to Integrated
Blade Inspection System Interface Development Specification, CI
DS560240021U, November 1987.

Geometric Modeling Applications Interface Program (GMAP) to Retirement
for Cause Interface As-designed Product Specification, CI PS560240011U,
December 1987.

Geometric Modeling Applications Interface Program (GMAP) to Retirement
for Cause Interface Unit Test Plan, CI UTP560240011U, December 1987.

2-2

Cl UM560240031U
July 1989

Interim Technical Report No. 8 (ITR560240008U)
“Geometric Modeling Applications Interface Program," December 1987
(Period 1 May 1987 -~ 31 July 1987).

Interim Technical Report No. 9 (ITR560240009U)
"Geometric Modeling Applications Interface Program," March 1988
(Period 1 August 1987 - 31 October 1987).

Geometric Modeling Applications Interface Program (GMAP) System Test
Plan, CI STP560240001U, March 1988.

Product Definition Data Interface (PDDI)/Geometric Modeling Applications
Interface Program (GMAP) Deliverables Roadmap Document, March 1988.

Geometric Modeling Applications Interface Program (GMAP) to Integrated
Blade Inspection System Interface Unit Test Plan, CI UTP560240021U,
March 1988.

Geometric Modeling Applications Interface Program (GMAP) to Integrated
Blade Inspection System Interface As-designed Product Specification, CI
PS560240021U, March 1988.

Geometric Modeling Applications Interface Program (GMAP) System
Component As-designed Product Specification, CI PS560240031U, March 1988.

Interim Technical Report No. 10 (ITR560240010U)
"Geometric Modeling Applications Interface Program," August 1988
(Period 1 November 1987 - 31 January 1988).

Interim Technical Report No. 11 (ITR560240010U)
"Geometric Modeling Applications Interface Program," August 1988
(Period 1 February 1988 - 30 April 1988).

Geometric Modeling Applications Interface Program (GMAP) to Retirement
for Cause Interface User Operator Manual, CI U/0M560240011U, August 1988.

Interim Technical Report No. 12 (ITR560240012U)
"Geometric Modeling Applications Interface Program" October 1988
(Period 1 May 1988 - 31 July 1988).

Geometric Modeling Applications Interface Program (GMAP) to Retirement
for Cause Interface Unit Test Report, CI UTR560240011U, November 1988.

Geometric Modeling Applications Interface Program (GMAP) to Integrated
Blade Inspection System Interface Unit Test Report, CI UTR5602421U,
November 1988.

CI UM560240031U
July 1989

Geometric Modeling Applications Interface Program (GMAP) System
Translator User Manual, CI UM560240021U, November 1988.

Geometric Modeling Applications Interface Program (GMAP) to Retirement
for Cause Interface As Built Product Specification, CI PS560240012U,
February 1989.

Geometric Modeling Applications Interface Program (GMAP) to Integrated
Blade Inspection System Interface As-built Product Specification, CI
PS560240022U, February 1989,

Geometric Modeling Applications Interface Program (GMAP) System
Components Operator's Manual, CI OM560240001U, February 1989.

Geometric Modeling Applications Interface Program (GMAP) to Integrated
Blade Inspection System Interface User/Operator Manual, CI
U/0M560240021U, February 1989.

Geometric Modeling Applications Interface Program (GMAP) Schema Manager
User's Manual, CI UM560240011U, February 1989.

Interim Technical Report No. 13 (ITR560240013U)
"Geometric Modeling Applications Interface Program" February 1989
(Period 1 August 1988 - 31 October 1988).

Interim Technical Report No. 14 (ITR560240014U)
"Geometric Modeling Applications Interface Program" July 1989
(Period 1 November 1988 - 31 January 1989).

Geometric Modeling Applications Interface Program (GMAP) Model Access
Software User Manual, CI UM560240031U, July 1989.

Geometric Modeling Applications Interface Program (GMAP) PDD Editor
User/Operator Manual, CI U/0M560240031U, July 1989.

Demonstration Model Descriptions for Geometric Modeling Applications
Interface Program (GMAP), CI TTD560240001U, July 1989.

Product Information Exchange System (PIES) User Manual for Geometric
Modeling Applications Interface Program (GMAP), CI TTD560240002U, July
1989,

2.1.2 Commercial

A Practical Guide to Splines, C. de Boor, Applied Mathematical Sciences,
Vol. 27, Springer-Verlag.

2-4

2.1.

CI UM560240031U
July 1989

Design of Database Structureg, T. J. Teorey and J. P. Fry,
Prentice-Hall, Inc., Englewood Cliffs, N.J.

, M. P. de Carmo,
Prentice-Hall, Inc., 1976.

IDEF1X Readers Reference, D. Appleton Company, December 1985.

Identification of Product Definition Data in a Manufacturjing Enterprise
=—_A Case Study. R, Lessard, United Technologies Research Center and R.
Disa, Pratt & Whitney, March 1986.

Use of Product Models in a CIM Environment, D. Koziol Emmerson and K.
Perlotto, Pratt & Whitney, March 1987.
Technical Issues in Product Data Transfer, Richard Lopatka, Pratt &
Whitney, September 1987.

e o S ’
Donald L. Deptowicz, Pratt & Whitney, January 1988.
Barriers to PDES Approval, Anthony Day, Sikorsky, and Richard Lopatka,

Pratt & Whitney, April 1988.

PDD: Implementatjon Issues, Diane Emmerson and Priscilla Blasko, United
Technologies Corporation, Proceedings of AUTOFACT '88, October 1988.

Geo [o) am: oto

Active File Exchange, Linda Phillips and Diane Emmerson, United
Technologies Corporation, National Computer Graphics Association
Conference, April 1989.

3 Stand s Orga a

ANSI Y14.5M, Dimensioning and Tolerancing.

"The ANSI/X3/SPARC DBMS Framework Report of the Study Group on Database
Management Systems," Informatjon Systems, Vol. 3, pp. 173-191, 1978.

The Second Draft Report of the Ad Hoc Committee on the Content and
Methodology of the IGES Version 3 (The Second PDES Report), K. Brauner
and D. Briggs, November 1984.

EXPRESS - A Language for Information Modeling, ISO, TC184/SC4/WG1,
January 1986.

CI UM560240031U
July 1989

The STEP File Structure, IS0, TC184/5C4/wWGl, January 1987.

Mapping from EXPRESS to Physical File Structure, IS0, TC184/SC4/WGl,
January 1987.

2.2 Terms and Acronyms

A glossary of terms frequently used in GMAP vwhich may be included in
this Model Access Software User's Manual is provided below. Some reference
notes applicable to these definitions are presented after the glossary. A
1ist of acronyms and abbreviations used in GMAP is also included in this
gsection.

2.2.1 Terms Used in GMAP

Accept/Reject/Incomplete Notice —- A display on the cell computer that
indicates the final status of the engine disk.

Accept = Acceptable within tolerance specified by engine
manufacturer

Reject = Rejected because of flaw(s) outside the range of
acceptable tolerances

Incomplete = Part cannot be inspected

Access Software —— A set of routines for creating, managing and querying
an incore Working Form model,

Angular -- An angular size tolerance is used to tolerance the size of an
angular feature independent of its angular location along an arc.

Application -- A method of producing a specific result.

Application Request -- A request initiated by an application program,
either through batch or interactive processing, which will interrogate the
model through the PDDI Access Software to obtain or operate on specific
information regarding the model and its components or elements.
Application Requested Data -- The data which fulfills the application's
original request and which is in the proper format and readable by the
application.

Architecture —- A design or orderly arrangement.

ASCII -~ American Standard Code for Information Interchange.

CI UM560240031U
July 1989

As-Is -- The present condition.

Attribute —— A quality of characteristics element of any entity having a
name and a value.

B-Spline -- A spline defined by a control polygon, B-spline basis
functions, and an associated knot vector, A Bezier curve is a special case
of a B-spline; a nurb is the most general case of a B-spline.

Bezier Curve —— A type of curve defined by a set of vertices called a
control polygon and a set of basis functions. The basis functions are known
as Bernstein polynomials. K vertices define a curve of order K-1l.

Binding -- Establishing specific physical references to data structures
for an application program; may be performed at compile time or at run time.

Blend -- A smooth, continuous transition from one surface to another.

Boundary Representation -- A topology imposed on 3-D geometric entities to
yield a general solid model. That model describes an object by describing
its boundary area.

Body of Revolution (BOR) Representation — A topology in which an obje-t

is represented as the volume swept by a curve rotated about a line. This is
a boundary representation in which the curve represents the surface area of
the object.

Bounded Geometry -- Geometry that has limits defined by its mathematical
domain or range.

Calibration Block Parameters (Scale Factors) -- Nondestructive test
parameters used to adjust a specific cell. These parameters are obtained
from the calibration blocks located at each cell.

Circumferential -- A circumferential tolerance specifies the tolerance

zone within which the average diameter of a circular feature must lie. The
average diameter is the actual circumference divided by pi (3.14159). A
circumferential tolerance is a specific example of a peripheral or perimeter
tolerance for a general curve.

Class —- A collection of entities that are alike in some manner.

CLIST -- IBM Command lists.

Composite Curve — A group of curve segments that are c0 continuous.

2-7

CI UM560240031U
July 1989

Compound Feature Representation -- An enumerative feature representation
in which at least one component is itself a feature. For example, a bolt
hole circle might be represented as a list of individual hole features.

Concentricity (Gemeric) —— A concentricity tolerance specifies a
cylindrical tolerance zone within which the axis of a feature must lie,
vhere the axis of the zone coincides with the axis of the datum.

Conceptual Schema -- Formally specified global view that is processing
independent, covering information requirements and formulation of
independent information structures. A neutral view of data, usually
represented in terms of entities and relations.

Conic -- A quadratic curve represented in the most general case by the
equation:

Ax? + Bxy + Cy2 + Dx + Ey + F=0.

A conic may be a circle, line, ellipse, parabola, or a hyperbola
depending on the coefficients, A, B, C, D, E, and F.

Constraints (Generic) -- An assertion to explicitly specify data meaning
or semantics.l (Notes appear at the end of this section.)

Context-Free Grammar -- The syntax of the language gives a precise
specification of the data without interpretation of it.

Constituent -- A specific instance of an entity that is used in the
definition of some other entity.

Data Dictionary -- A catalog of all data elements in a design, giving
their name, definition, format, source, and usage. May also include data
types and value limits.

Defining Airfoil Sections -- A planar or conical section that depicts an
airfoil profile. Defining airfoil sections are those that meet aerodynamic
requirements. Other intermediate sections are added for Manufacturing
purposes.

Dimension -- A part dimension is a quantifiable value expressing size,
form, or location,.

Domain -- The set of values permissible in a given context.
Dynamic Allocation -- The allocation (and de-allocation) of memory

resources as required by the application. The opposite is gtatic allocation
vhere a fixed size segment of memory is available to the application.

2-8

CI UM560240031U
July 1989

"x
. Voney &
.

@

Bddy Current Cell — Hardware used to perform an Eddy current inspection
operation (surface flaws).

Eddy Current Inspection -- An inspection method used to detect internal
potential flaws on a disk. It is based on the principle of sending
electromagnetic signals to a target area on a part and
detecting/interpreting reflection (Eddy current) from the target.

Eddy Current Scan Plan -- An interpreter code program controlling the Eddy
current inspection of a particular geometry.

Eddy Current/Ultrasonic Flaw Data Printout -- A printout containing size
and location information about specific flaw(s) (both critical and
noncritical) associated with a particular part.

Entity —- A description of a person, place, or thing, about which
information is kept.

External Reference -- A reference to some quantity of data that exists
somewhere outside the scope of the immediate body of information.

Feature -- A part feature in the dimensioning and tolerancing context is a
feature in the sense of ANSI Y14.5M, that is, a physical component portion
of a part, such as a surface, hole, slot, and so on, that is used in a
tolerancing situation. In the dimensioning and tolerancing context, a
feature consists of individual or groups of basic shape elements used to
define the physical shape of an item. This general dimensioning and
tolerancing use of features is to be distinguished from Features. The word
“features" alone implies dimensioning and tolerancing features. The term
"form feature” is described below.

Feature Pattern —- A geometric pattern of occurrences of similar form
features, for example, a circular pattern of scallops, a rectangular array
of holes.

Feature Representation (Generic) — A description of a form feature within
the context of a geometric model.

Feature Type -- A name applied to a form feature that is suggestive of its
shape and size, for example, hole, slot, web.

Feature of Size (Genmeric) -- A feature of size provides a geometric

location capable of being referenced for use with datums and tolerances. A
feature of size can be a GMAP feature, or other referenceable shape elements
of a part model that are symmetric about a point, line, plane, axis, curve,
and so on. When a feature of size is used in a relationship with a
tolerance or datum, its feature of symmetry is the implied reference.

CI UM560240031U
July 1989

Flat Pattern Representation (Extrusion Representation) -- A topology in
which an object is represented as the volume swept by a planar polygon
moving in a direction normal to its plane. The polygon may have internal
polygon represent the surface area of the object,

Flaw Characteristics -—- Location, length, width,-depth, and nondestructive
test parameters assoclated with a specific flaw.

Flawv Data Packet -- Packet containing nonevaluated flaw data. Note that
the packet can contain zero flaws.

Flav Orientation -- The direction of the major characteristic of the flaw
with respect of the part coordinate system. (See the notes section at the
end of this glossary.)

Flaw Suspect Location -- The coordinate location of a possible flaw
detected during a survey mode inspection (six-axis position of ultrasonic
cell, seven-axis position of Eddy current cell).

Form Feature -- A portion of a part's geometry that is useful to regard as
an entity. In a boundary representation context, this is a subset of the
part's surface area.

Form Tolerance -- Form tolerances are used to control the form of model
features. A form tolerance specifies the amount that an actual features
form may vary from nominal. Form tolerance include straightness tolerance,
flatness tolerance, roundness/circularity tolerance, cylindricity tolerance,
perpendicularity tolerance, parallelism tolerance, angularity tolerance,
profile-of-a-line tolerance, profile-of-a-surface tolerance, circular-runout
tolerance, true-direction tolerance, and mismatch tolerance.

Functionality -- (1) To show that the configuration item has fulfilled the
specified requirements. (2) The receiving and sending systems can operate
on the entity in the same manner with the same results within a pre-defined
tolerance.

Function Modeling -- A description of a system in terms of a hierarchy of
functions or activities, each level decomposing higher ones into greater
detail. Functions are named by verbs; nouns related are declared as inputs,
controls, outputs, and mechanisms.

Geometric Element (Generic) -- An instance of a geometric entity.

Ceometric Group -- A group of geometric entities with a name.

Geometric Model -- A part description in terms of its underlying geometric
elements. The model may be a wireframe, surface, or solid model.

2-10

C1 UMS560240031U
July 1989

Geometric Pattern -- A circular or rectangular pattern of geometric
entities.

Group Technology Code -~ An alphanumeric string identifying significant
characteristics of a product, enabling group technology applications. Also
known as Part Classification Code.

Include File —- PASCAL source code from another file or library included
on the compilation of a PASCAL source file.

Input Data —- That information which the application needs to supply in
order to interrogate or operate on the model. This data may assume only
these forms prescribed by the PDDI Access Software specification.

Inspection Cycle —- A period for which nondestructive testing inspection
requirements are defined.

Inspection Cycle Zone -- An entity that is composed of a unique
combination of zone and inspection cycle,

Inspection Module Operator -- Refers to personnel operating RFC cell(s).
Instrument Setting Adjustments -- Nondestructive testing parameter
adjustments automatically accomplished via pre- and post-calibration
operations. These adjustments have to be accomplished within a
predetermined tolerance.

Internal Flaw -- A subsurface anomaly.

Internal Flaw Major Characteristic -- A vector determined by an agreed
upon method.

Example (1): The vector of greatest magnitude from the centroid to a
boundary of the anomaly.

Example (2): A vector representing the major axis of the minimum
ellipsoidal envelope encompassing the anomaly.

Internal Flaw Tolerance -- A unique combination of:
(a) Internal flaw orientation range.

(b) Serviceable internal flaw tolerance limits.
(c) Repairable internal flaw tolerance limits.

2-11

CI UMS560240031U
July 1989

Internal Flaw Tolerance Limit -- A unique combination of:

7(a) Maximum diameter.
(b) Maximum depth below surface.
(¢) Maximum thickness.

Interpreted Request -- Input data which has been appropriately modified
to conform to the PDDI Access Software's internal data representation so
that it may be further processed.

Key Attribute -- An attribute or combination of attributes having values
that uniquely identify each entity instance.?

Laminates Representation (Generic) -- A topology in which an object is
represented as layers of flat material of known thickness.

Location Tolerance -- Location tolerances specify the allowable variation

in position of model features., Location tolerances include various forms of
position tolerancing conventions. These are (true) position, concentricity,
alignment, rectilinear location, and angular location.

Logistics Support -- The function of procuring, distributing, maintaining,
replacing, and repairing material in support of a delivered product.

Machine Coordinate Positions -- The probe location with respect to machine
coordinates.
Machine Preset Data -- Machine coordinate adjustments automatically

accomplished via pre- and post-calibration operations. These adjustments
have to be accomplished within predetermined tolerance.

Metadata -- Data about data. Defines the physical schema and record
formats of the part data.

Metamodel -- A body of data that defines the characteristics of a data
model or structure.

Model ~- A collection of PDD that is transferable, displayable,

accessible, and equivalent to a Part. The internal representation of the
application data, as initiated and organized by the user. The model is also
referred to as the Working Form.

Model Network Definition -- The set of rules and definitions which outline
in detail the data structure whereby higher order entities may be composed
of lower order entities, or constituents, and the lowe. order entities may
be constituents of one or more higher order entities.

2-12

CIl UM560240031U
July 1989

Native System -- The PDD and applications in a format that is unique to
the database of a CAD system.

Nondestructive Testing Parameters -~ Parameters used by the Eddy current
and ultrasonic instruments (examples: amplitude, phase angle, gain,
threshold, and so on).

Nonconstructive Feature Representation (Explicit Feature Representation)
-— A feature representation that at least partially depends on a declaration
that a face, or portion of a face, it "in" the feature.

Nondestructive Testing Personnel -- Personnel responsible for the
generation of scan plans and derivation of applicable nondestructive testing
instrument settings used in the scan plans.

Ronshape Data -- Produce definition data that cannot be represented by
shape elements.

Normal Forms -- Conditions reflecting the degree of refinement and control
over the relationships and entities in an information model.

Numerical Control Program (Complete and Proposed) —- Set of program
instructions used to generate a probe path.

Orientation Range -- An envelope in which the major flaw characteristic
must lie.

Parse -- The process of analyzing input strings (records) to identify
fields and to verify that the data has a valid format.

Part Blueprint —- A blueprint provided by the engine manufacturer of a
particular F100 engine disk.

Physical Schema —- Internal representation of data; the computer view that
includes stored record format and physical ordering of stored records.

PID File —- A PID File is a copy of the Working Form filed to disk for
temporary storage. The software that produces this capability (PID Code) is
provide~s as an interim solution while a translator to the native database is
in development.

Polynomial Spline -- A parametric spline of order 1, 2, or 3 defined by a

set of N+l points, The spline is CX, CY, or CZ continuous and defined by
coefficients such that:

2-13

Cl UM560240031U
July 1989

x(1) = AX(4) + BX(q) * 5 + CX(q) * S**2 + DX(j) * S**3
y(i) = A¥(4) + BY(y) * S + C¥(q) * S**2 + DY¥(j) * S**3
z(i) = AZ(gy + BZ(4y * § + CZ(q) * S**2 + DZ(q) * S5**3

and a parameter space (Tg, T3, ... Tp)

where

Tei) < =u ¢ = T(441)

S=u—'1'(i)

Position Tolerance -- A position tolerance (true position) specifies a
tolerance zone within which the feature may vary in any direction.

Post-processor —— A phase of the translator where data is received from
the Exchange Format and is converted to the Working Form.

Pre-processor -- A phase of the translator where data is taken from the
Working Form and is converted to the Exchange Format.

Primitive Constructive Feature Representation (Generic) -- A constructive
representation that is noncompound and that does not incorporate another
feature. Such a representation must consist solely of overt construction
information. Representation of a through hole by centerline and diameter is
an example.

Probe Blueprint -- Blueprint of Eddy current probe supplied by the probe
manufacturer,

Product Definition Data -- Those data "explicitly representing all

required concepts, attributes, and relationships" normally communicated from
Design throughout Manufacturing and Logistics Support. The data include
both shape and nonshape information required to fully represent a component
or assembly so that it can be analyzed, manufactured, inspected, and
supported. They enable downstream applications, but do not include process
instructions. These data are not always finalized at the design release;
the manufacturing process can also add to the product model or generate
derived manufacturing product models,

Product Life Cycle -- Includes design, analysis, manufacturing,
inspection, and product and logistics support of a product.

2-14

CI UM560240031U
July 1989

Product Model -- A computer representation of a product.

Product Support -- The function that interprets customer requests for
information and can provide the technical responses to the customer in the
form of technical orders and instructions.

Proprietary Part Flaw Data -~ Formatted dataset containing proprietary
data defining size(s), maximums, and location(s) of critical flaw(s)
(dimensional and locational tolerance).

RAW.0 File -~ A data file that uses a bi-cubic patch surface
representation to define the surfaces of an airfoil.

Ready Status -- Go/No-Go decision.

Relation -— A logical association between entities.3

Remount Decision -~- Decision to remount an engine disk.

Replicate Feature Representation (Generic) -- A description of a feature

as being identical to another feature except for location. Mathematically,
a replicate feature representation consists of the identification of another
(necessarily constructive) feature plus a transformation.

Robot Initialization Parameters -- A set of nondestructive testing
parameters used to initialize the robot on an Eddy current or ultrasonic

cell.

Rotational Sweep -- A sweep in which the swept curve is rotated about a
line (the "centerline" of the sweep).

Ruled Surface (Generic) -- A surface defined by a linear blend of two
curves.
Run System -- The Translator subpackage which provides the communication

interface between the user and the pre/Post-processors.

Run-Time Subschema -- A subset of the data dictionary information used at
run~time by the access software to provide field data and check data.

Scan Plan -- Instructions that drive an inspection; these include
inspection area geometry, ordered inspection path points, inspection probe
selection, inspection path for each probe, mechanical commands that allow
mechanical manipulator positioning, instrument setting, and all the
variables needed for signal processing and flaw data acquisition during
inspection.

2-15

CI UM560240031U0
July 1989

Scan Plan Specifications -- Standards and procedures used in creating Eddy
current and ultrasonic scan plans for the RFC system.

Schema -- Formal definition of information structure. See Conceptual
Schema, Physical Schema, Run-time Schema.

Shape — The physical geometry of a mechanical part, as distinguished from
a computer description of that geometry. Where the difference is
significant, the attitude is taken that shape is nominal or basic, with
shape variations of tolerances grafted thereon.

Shape Data -- Include the geometric, topological description of a product
along with the associated dimensional tolerances and feature descriptions.

Single Spatial Probe/Transducer Path -- The starting and ending location
of a single probe movement.

Size Tolerance -- Size tolerances specify the allowable variation in
size-of-model features, independent of location. Size tolerances include
circumferential, rectilinear size, and angular size.

Solid Geometric Model (Shape Representation) -- A computer description of
shape. The description may be partial in the sense that not all aspects of
part shape are indicated. For example, a body of revolution representation
of a turned part may not describe the nonaxisymmetric4 aspects of part
geometry. A solid model must be complete and unambiguous in the sense that
it describes a single volume in 3-D space.

Solid Modeling ~- The creation of an unambiguous and complete
representation of the size and shape of an object.

Source Code -~ A computer program written in some language which is
processed to produce machine code.

Spline -- A piecewise polynomial of order K, having continuity up to order
K-1 at the segment joints.

Squirter Blueprint —- Blueprint of the squirter head that houses the
ultrasonic transducer.

Subface -- A subface is a bounded portion of a face. It is defined by an
underlying face, exactly one periphery closed curve and zero, one, or more
internal closed curves that represent cutouts or holes in the region. The
internal closed curve must not touch or intersect each other or the
periphery closed curve and must be entirely contained within the periphery
closed curve.

2-16

CI UMS560240031U
July 1989

Surface Flaw -- A surface anomaly.

Surface Flaw Major Characteristic -- A vector determined by an agreed upon
method.

Example: A vector representing the major axis of the minimum elliptical
envelope encompassing the anomaly in the plane of the surface.

Surface Flaw Tolerance -- A unique combination of:

(a) Surface flaw orientation range.
(b) Serviceable surface flaw tolerance limits,
(¢) Repairable surface flaw tolerance limits.

Surface Flaw Tolerance Limit -- A unique combination of:

(a) Maximum length.
(b) Maximum width.
(c¢) Maximum depth.

Swveep Surface —— Surfaces formed by extruding or revolving a planar
profile in space.

Syntax -- Grammar: A set of rules for forming meaningful phrases and
sentences from words in a vocabulary.

System Computer —- VAX 11/780 and supporting peripheral hardware.

System Constraints -- Those hardware and software environmental
constraints which will be imposed upon the PDDI Access Software that will
limit its implementation and application. An example of such constraints
might be the particular compiler used to compile the PDDI Access Software
package.

To-Be -- The future condition possible, given a proposed capability.

Tolerance (Generic) -- The total amount by which something may vary. For
mechanical product definition, tolerances can be shape tolerances, weight
tolerances, finish tolerances and so on. In the context of GMAP, the term
"tolerance” used alone implies shape tolerance. Other forms of tolerance
(nonshape) are explicitly stated, for example, "finish tolerance.” In a
GMAP product model, tolerances occur without dimensions. As in the Product
Definition Data Interface Program, model dimensions are implicit in the
model geometry. Therefore, application of a tolerance implies a specific
underlying dimension or geometric condition.

Topology -- A data structure that assembles geometric entities (points,
curves, surfaces) into a solid geometric model.

2-17

CI UM560240031U
July 1989

Transducer Blueprint —— Blueprint of ultrasonic transducer supplied by the
transducer manufacturer.

Transfer Data -- The data required to make an exchange of data between
systems (i.e., delimiters, record counts, record length, entity counts,
numeric precision).

Translator — A software MECHANISM that is used for passing data between
the Exchange Format and Working Form of the PDD.

Ultrasonic Cell -- Hardware used to perform ultrasonic inspection
operation (internal flaws).

Ultrasonic Inspection -- An inspection method used to detect surface flaws
on a disk. It uses ultrasonic waves through a stream of water to send and
collect signals concerning an area targeted for inspection.

Ultrasonic Scan Plan -- Interpreter code program controlling the
ultrasonic inspection of a particular geometry.

Unbounded Geometry -- Geometry represented parametrically, without limits,
usually by coefficients to a defining equation.

Unigraphics (UG) -- A computer graphics system.
User Function (UFURC) -- An interface to the UG database.

Working Form -- Product definition data information in machine-dependent
data formats; an a memory resident network model.

Zone —- A physical area of the disk composed of zone components.

Zone Component -- A subface, face, or feature that constitutes a zone or
element of a zone,

NOTES:
1 1.7, Teorey and J.P. Fry, Design of Database Structures, lst
edition, Prentice-Hall, Inc., Englewood Cliffs, N.J., p. 463.

2 Integrated Computer Aided Manufacturing (ICAM) Architecture, Vol.
S, Information Modeling Manual (IDEF1l), USAF Report NO. AFWAL-TR-81-4023,
June 1981, p. 212,

3 1bid., p. 214.

4 1bid., p. 211.

2-18

AIMS
ANSI

APT
ATP
BOM
BOR
BPI
BREP
CAD
CAE
CAEDS
CALS
CAM
CAM-I
CAPP
CAS
CDM
CDR
CDT
CFSR
CI
CIM
CLIST
CcM
oy
C/SSR
CWBS
DBMS

Acronvms Used In GMAP

CI UM$560240031U
July 1989

-—- Application Data Block (also referred to as Attribute Data

Block).

-- Automated IDEF Methodology System.

—- American National Standards Institute.

—— Abstract of New Technology.

-~ Automatically Programmed Tools.

-=- Automation Technology Products.
—- Bill of Materials,
—— Body of Revolution.

--— Bits per Inch.

~- Boundary Representation.

~~ Computer Aided
—-- Computer Aided
-- Computer Aided
——= Computer Aided
-— Computer Aided
—— Computer Aided
-— Computer Aided
-~— Cooled Airfoil

Design.

Engineering.

Engineering Design System.
Acquisition and Logistics Support.
Manufacturing.
Manufacturing--International.
Process Planning.

System.

-- Common Data Model.

-~— Critical Design Review.

~- Component Design Technology.

~- Contract Fund Status Report.

~— Configuration Item.

~— Computer Integrated Manufacturing.

~- IBM command list.

Configuration Management.

~- Coordinate Measuring Machine.

Cosgt/Schedule Status Report.

Contract Work Breakdown Structure.

-- Data Base Management System.

2-19

CI UM560240031U
July 1989

DCL -~ DEC Command Language.

DDL —- Data Definition Language.

DEA - Digital Equipment Automation.

DEC -- Digital Equipment Corporation.

DES#@ —— (ICAM) Architecture of Design.

DJR —— Design Job Request; Drafting Job Request.

DoD ~- Department of Defense.

DS -— Design Specification.

DSM —— Design Substantiation Memo.

EBCDIC -~ Extended Binary Coded Decimal Interchange Code (IBM character
set).

EC -~ Eddy Current.

ECO -- Engineering Change Order.

EDM -~ Electrical Discharge Machining.

EF -- Exchange Format.

EII -- Engineering Information Index.

EMD -- Engineering Master Drawing.

EPCS -- Engine Product Configuration Support.

ESA -- Engineering Source Approval.

ESP ~- Experimental Solids Proposal.

FEDD ~- For Early Domestic Dissemination,

FEM ~- Finite-Element Modeling.

FOF -~ Factory of the Future.

FOS -- Feature of Size.

FPIM -- Fluorescent Penetrant Inspection Module,.

FSCM -~ Federal Supply Code for Manufacturers.

GE -~ General Electric.

GMAP -- Geometric Modeling Applications Interface Program.

GSE -- Ground Support Equipment.

HCF -- High-Cycle Fatigue.

IBIS -- Integrated Blade Inspection System.

IBM -- International Business Machines.

2-20

|

CI UM560240031U

July 1989
ICAM ~- Integrated Computer Aided Manufacturing.
ICOM ~- Input/Control/Output/Mechanism.
ICS -~ Information Computer System,
IDEF -- ICAM Definition.
IDEF8 -- IDEF Function Modeling.
IDEF1 -- IDEF Information Modeling.
IDEF1X -- IDEF Extended Information Modeling.
IDEF2 —- IDEF Dynamics Modeling.
IDSS —— Integrated Decision Support System.
1EEE —— Institute of Electrical and Electronics Engineers.
IEN -~ Internal Engineering Notice.
IFS -- Interface Specification.
IGES -— Initial Graphics Exchange Specification.
I1SS ~- Integrated Information Support System.
ILC —-- Improved Life Core.
IMS — Information Management System.
IPGS -— (IBIS) Inspection Plan Generation System.
IRB -- Industry Review Board.
IRIM -- Infrared Inspection Module.
IS0 -- International Standards Organization.
ITA —- Intelligent Task Automation.
ITI -- International TechneGroup Incorporated.
ITR -- Interim Technical Report.
LCF -- Low-Cycle Fatigue.
MAS -- Model Access Software.
MCAIR -~ McDonnell Douglas Corporation/McDonnell Aircraft Company.
MFG@ —— (ICAM) Architecture of Manufacturing.
MRP -— Materials Requirements Planning.
NAD -~ Needs Analysis Document.
NBS -- Rational Bureau of Standards.
R/C -- Numerical Control.
NDE -- Nondestructive Evaluation,

2-21

NDML
NDT
NISB
NVI
oGP
PA/QA
PD
PDD
PDDI
PDES
PDL
PED
PI
PID
PIES
PMP/PMS
PROCAP
PS
RFC
RPM
SA-ALC
SAD
SD
SDL
SDS
SL
SML
SOA
SOR
SPC
SPF
SQA

Neutral

CI UM560240031U
July 1989

Data Manipulation Language.

Nondestructive Test.

National Transportation Safety Board.

Name/Value Interface.

Optical
Product
Product
Product
Product
Product

Program

Gaging Products, Inc.
Assurance/Quality Assurance,
Data.

Definition Data.

Definition Data Interface Program.
Data Exchange Specification.
Design Language.

Preliminary Engine Design.

Principal Investigator.

PDDI Interim Database.

Product
Program
Process

Product

Information Exchange System.

Management Plan/Project Master Schedule,
Capability.

Specification.

Retirement for Cause.

Revolutions per Minute.

San Antonio-Air Logistics Center.

State-of-the-Art Document.

Scoping

Document.

Source Data List.

System Design Specification.

Salvage

Layout.

Source Material Log.

State-of-the-Art (Survey).

Surface

of Revolution.

Statistical Process Control.

System Panel Facility.

Software Quality Assurance.

2-22

SQAP
SRD
SRL
SS
STEP
STP
TCTO
TD
TDCR
TDR
TechMod
TO
TOP
TSO
UFUNC
UG
UGFM
UsaA
USAF
UTC
UTP

UTRC
VAX
VMS
WBS

WPAFB
XIM

Software Quality Assurance Plan.
System Requirements Document.
Systems Research Laboratories.

System Specification.

CI UM560240031U
July 1989

Standard for the Exchange of Product Model Data.

System Test Plan.

Time Compliance Technical Order.
Technical Data.

Turbine Design Cost Reduction.
Tool Design Request.

Technology Modernization.
Technical Order.

Technical and Office Protocol.
Time-Sharing Option (IBM term).
User Function.

Unigraphics.

Unigraphics File Manager.
Unified System for Airfoils.
United States Air Force.

United Technologies Corporation.
Unit Test Plan.

Unit Test Report.

United Technologies Research Center.
Virtual Architecture Extended.
Virtual Memory System.

Work Breakdown Structure.
Working Form.

Wright-Patterson Air Force Base,
X-Ray Inspection Module.

CI UM560240031U
July 1989

SECTION 3

SYSTEM OVERVIEW

3.1 System tecture

The purpose of the GMAP/Product Definition Data Interface (PDDI)
Software System is to provide a prototype for the communication of complete
Product Definition Data (PDD) between dissimilar CAD/CAM Systems. This
system will serve as the information interface between engineering and
manufacturing functions. As shown in Figure 3-1, it is composed of the
Conceptual Schema, Schema Manager, Exchange Format (EF), the System
Translator, and Model Access Software (MAS) with Name Value Interface (NVI).

The Conceptual Schema is a data dictionary that defines the data needed
to define a CAD/CAM model. The Schema Manager is a software tool that will
be used to manage all aspects of the creation and interrogation of the
Conceptual Schema, and will be used to generate a physical schema. The EF
is a neutral physical sequential format for passing data between dissimilar
systems. The System Translator is the software mechanism for passing this
data between the EF and the Working Form (WF) of the PDD. The MAS is a set
of callable utility programs that will allow applications to manipulate and
query PDD WF models. The NVI frees applications programmers from the need
to be concerned with the physical location of attribute values for entities
within the WF.

3.1.1 System Interfaces

The GMAP/PDDI software must interface with the computer system on which
it is installed, the local (native) CAD/CAM database, the EF, the WF, and
the user (application). It does this via MAS, the System Translator and
local (native) developed software packages.

3.1.2 System Environment

The GMAP/PDDI system was developed in the following computing
environment:

Computer/0 at System

IBM 43XX/MVS with TSO and associated tape drives, disk drives and
terminals.

DEC VAX 11/780 VMS with associated tape drives, disk drives and
terminals.

Cl UM560240031U
July 1989

GMAP Parts
. Conceptua .III.
Schema Schema
IDEF 1X e
Express —
Schema Manager
|
Data Dictionary
Include Files Run-Time Subschema
]
icath — Nmue System Translator
Applications [
—L'_‘ Model Access
) Softeare Exchange
Format
File
Storage Working Form

Figure 3-1. GMAP/PDDI System Architecture
Storage ore uirements

The minimum core requirements for the PDDI software and database is 1.0M
plus the size of the model. (The PDDI Machined Rib model required 0.57M)

Compjilers

IBM-PASCAL/VS Release 2.2
DEC-PASCAL V3.3, FORTRAN 77 V4.4

Cl1 UM560240031U
July 1989

Terminals

E&S PS300 (or equivalent for graphics applications)
IBM 3270 (or equivalent)

The PDDI/GMAP software system is transportable to other computing
systems. However, appropriate local (native) interfaces (translator) must
be provided. The Operator's Manual (OM 56024001U) provides information on
migration to other systems.

3.2 Schema Manager

The Schema Manager enables the data administrator to create and maintain
entity definitions in a Conceptual Schema model, analyze the defined
entities, and generate physical schema from the Conceptual Schema.

3.2.1 FPhysical Schemas

The WF physical schema is determined through a data dictionary or PASCAL
include files. The EF physical schema is defined by the Conceptual Schema
and the specification for the neutral file format.

3.3 EF

The EF is a neutral data format. This physical, sequential format is
used to for passing data between dissimilar CAD/CAM systems.

3.4 ste a; ato

The System Translator is the software package used to format PDD for
transmission between different CAD/CAM systems. The Translator has a
"Preprocessor” which collects data from the sending system and formulates it
into an EF file; and a "Postprocessor" which collects the EF file and
formulates it into the receiving system internal WF.

3.5 od ccess tware

The MAS is a set of PASCAL procedures that maintains the physical
structure of related user data in computer memory. This user data is
referred to as the WF model. The MAS provides an interface to the WF model
for application programs te create, relate, and access elements of user data.

The application programs are independent of the physical structure of
the stored data elements. This independence ensures that as different

structure techniques are implemented, the application programs need not
change.

3-3

Cl UM560240031U
July 1989

3.5.1 Data Jtems

The MAS manages two types of data: entities and lists. An entity is an 2
element of data supplied by the application to be stored in the WF. A list
is a collection of entity keys. A list is a collection of entity keys
created by the application in the WF.

3.5.1.1 Entity

An entity is the principle data item managed by the MAS, and is:

o Defined by the conceptual schema in the application creating the
entity

o Accessed by a unique key return from the create entity function

¢ A node in the WF structure containing an Attribute Data Block
(ADB), and references to other entities in Constituent
Relationships and/or User Relationships

R A_BILOCK

An ADB is a collection of data embedded in a single contiguous block
of memory. Individual pieces of data within an ADB are called
attributes. MAS manages only the first three items in the structure
of an ADB. These three attributes, KIND, LENGTH, and SYSUSE, are
required in every entity. Each attribute is described below:

KIND - Must be the first item defined in the ADB. The KIND defines
the entity type code. This code cannot be changed.

LENGTH - Must be the second item defined in the ADB. The LENGTH
defines the number of bytes in the ADB including KIND, LENGTH, and
SYSUSE.

SYSUSE - One full word of system use data reserved for internal
purposes. These data are never used by the application, and should
never be inspected or modified.

ROTE: All other attribute data in the ADB is managed by the
application program.

The MAS allows the structuring of the user data. The entities can be
related in user/constituent order. An entity may be related to multiple
user entities, creating a network structure in the WF. An entity may also
contain multiple constituent entities.

3-4

CI UMS560240031U
July 1989

GONSTITUENT RELATIONSHIP

A constituent entity is used in the definition of the user entity.
Inclusive constituents of an entity encompass all descendants, their
descendants, and so forth until there are no more descendants. For
example in Figure 3-2, Point 0 (PO) and Point 1 (Pl) are constituents
of Line 1.

LINE = ENTITY(5008);

IDENT : KEY T_IDENT;
DISPLA : T_DISPLAY;
PO : POINT;
Pl : POINT;
END_ENTITY;
Line
1
. PO
Display [- P1
] T 1
Paint 0 Point 1
)
X
] X .
Y Line Line
Z 1 y 1 [

Figure 3-2. LINE: An Entity With Constituents

3-5

CI UM560240031U
July 1989

ER ONSHIPS
A user entity uses constituent entjties in its definition. Inclusive
users of an entity include all ancestors, their ancestors, and so

forth until there are no more ancestors. For example in Figure 3-2,
Line 1 is a user of Point O (PO) and Point 1 (P1).

3.5.1.2 List

A list is a collection of entity keys which is:
o Created by the application program

o0 Accessed by a unique list key returned from the Creace List
Functions

o Used by the Application to store selected entity keys for
subsequent processing.

3.5.2 Interface Parameters

The MAS is a set of PASCAL routines which provides an interface to the
WF model. These routines contain input and output arguments referred to
here as "interface parameters."” Each interface parameter has a name and a
type. This information is shown as follows:
DATA~NRAME : DATA-TYPE.
3.5.2.1 Data-KRame Parameters
The following conventions are used to name parameters:
o Keys are named KEY1l, KEY2,...KEYN.
0 The ADB is named ENTDEF.

o Text parameters are named according to their purpose.

o

Integer parameters are named according to their purpose.
0 A return code is produced by every interface routine/operation.

This parameter is a full word integer and is always named IRC.
(See Appendix C for a return code list.)

3-6

CI UM560240031U
July 1989

3.5.2.2 Data-Type Parameters
Data-Type parameters may be one of the following:
ANYKEY - Access key of an entity or list.
ENTBLOCK - Entity data block definition.
- In PASCAL, probably declared as a record.
- In FORTRAN, declared as a common or dimension array.

CHARACTER - A single character as defined by the system.

INTEGER - A full word integer.

3.5.2.3 Formal Data Tvpes

The following is a reference list of data-types for interface calls in
this MAS document.

ANYKEY = INTEGER
LISTKEY = ANYKEY
ENTKEY = ARYKEY
ORD_KIND = INTEGER
EXT_RET_CODE = INTEGER
LISTPSTR = INTEGER
LISTINDX = INTEGER
LISTSIZE = INTEGER
ROUTINE = ARRAY(1l...8) OF CEARACTER
RAMTYP = ARRAY(1l...6) OF CHARACTER
(ADB) ENTBLOCK = RECORD OF
KIND = ORD_KIND
SIZE = INTEGER
SYSUSE = INTEGER
DATA = (USER DEFINED)

The formal declarations for the MAS interface routines are maintained in
the member APL TYP of the library "CADS.GMAP.V33.MASINC"

3.5.3 Memory Manager

A Model Access Memory Manager was developed to replace the PASCAL
run-time memory manager. It reduces the number of bytes of overhead
required for free-space collection, and isolates the WF model from all other
PASCAL dynamic allocations.

3.7

o

CI UM560240031U
July 1989

This memory manager is currently in the MAS package and requires no user
intervention for utilization.

3.6 NVI

The RVI frees applications programmers from concern for the physical
location of attributes for entities in the WF of the MAS. The NVI provides
the ability to alter the physical data structure without impacting program
source code and removes the need to program and maintain attribute data
structures and access algorithms by mpplications programmers. Section 5
provides detailed information on this feature. ’

3-8

CI UM560240031U
July 1989

SECTION 4
MODEL, ACCESS SOFTWARE (MAS) OPERATIONS AND ENVIRONMENT

4.1 oductio

The Entity Operations and List Operations sections provide the
applications programmer with the interface operations needed to access the
data structures passed back to the application program.

Figure 4-1 illustrates the interrelationships of the MAS interface
operations shown in these sections.

ADB List (of Keys)

IRC {} KEY
a PDDI Access Software Interface Operations \
")

\Uctivate) \WUpdate / _ General J
Cregte
\ et \ List Delete /
Get List Boolean
List Edit
Structured
Delete Lists List .
_ ‘—7——’ Sequential

' Reod/Exec
A\ J j

Lower Level Operations

_ J
2 AV

Working User
Copy Application

Figure 4-1. MAS Interface Operations

4-1

p—

CI UM560240031U
July 1989

4.2 itia atio eletion of the MAS Working Form (WF
Two routines provide the interface used to initialize the MAS.

The basic initialization operation (MAINIT) creates a working model and
enables MAS.

The MAKILL functjion is used to destroy the working model and disable MAS.

An application does not have to install a data dictionary. It can
create and use entities on an ad hoc basis. If a data dictionary is not
installed, the following limitations are imposed:

1. Any entity type will be permitted.

2. The interface routines will not validate any operation other than

outright errors; i.e., defining an ADB with a negative length. The
application is - "on its own".

3. There will be no provision for organization of entities by class.

Included with the initialization and deletion operations descriptions
that follow are the error and warning messages that may be returned.
Appendix C contains a complete list of these messages along with their
numeric codes.

FUNCTION:

FORMAT:

DESCRIPTION:

ERRORS:

e e ———— = -

CI UM660240031U

July 1989
MAINIT

Initialize the working model.
MAINIT (IRC)
INPUT:

NONE
OUTPUT:

IRC : IRTEGER

The procedure return code.
The working model will be initialized.
Model Access Software is enabled.
Message Explanatjon
MAS_INIT_FAILED Could not create schema and its
root.

MAINIT_ALREADY_DONE Root already created.
NOT_ENOUGH_ROOM No more core memory.

Do not call MAINIT twice in succession. Use a MAKILL to
delete the current environment before initializing another.

4-3

FUNCTION:

FORMAT:

DESCRIPTION:

ERRORS:

CI UM560240031U
July 1989

MAKILL

Delete the current working model.
MAKILL (IRC)

INPUT:
NONE

OUTPUT:
IRC : INTEGER
The procedure return code,
The entire working model is destroyed.
Model Access Software is disabled.

None.

CI UM560240031U
July 1989

4.3 Entjty Operatjons

The basic entity operations can be categorized by the following
functions:

Create

Query

Update

Delete

Activate
Application Flags

All operations performed on entity constituent lists are done by list
operations, with the exception of creating an entity with constituents.

Included with the entity operations descriptions presented on the pages

that follow are the error and warning messages that may be returned.

Appendix C contains a complete list of these messages along with their
numeric codes.

4.3 1 Create Operations

These operations allow the creation of entities in the MAS WF model.
The application creates the entity attribute data block in its local memory

space. This includes the fields required by MAS (KIND, LENGTH, and SYSUSE)
as well as the attributes defined by the application.

The create routines are shown in Table 4-1, and the following pages.
IABLE 4-1

CREATE ROUTINES

DESCRIPTION ROUTINE
Create an entity. MAECR
Create an entity with a constituent
list of specified size. MAECRN

FUNCTION:

FORMAT:

DESCRIPTION:

Cl1 UM560240031U
July 1989

Create an entity.

MAECR(ENTDEF,KEY1,KEY2,IRC)

INPUT:
ENTDEF : ENTBLOCK
The application data structure which contains
the entity defin;tion.
KEY1 s ANYKEY
The entity or list of entities to be made
constituents of the entity being created.
OUTPUT:
KEY2 : ENTKEY
The key of the newly created entity.
IRC : INTEGERS

The return code.

The entity is added to the model. Constituent entities are
connected to the entity. If KEYl is an entity key, then only
that entity will become a constituent. If KEYl is an
application list key, then all entities in the application
1ist will become constituents.

KEY1 may dbe nil if the entity being created is to have no
constituents (a full word integer zero can be used as a nil
key).

NOTE: The application is responsible for the format of the
ADB data after the first three items (KIND, SIZE, SYSUSE).
The KIND is a positive integer. The length is a positive
integer representing the length of the ADB (including the
three items required by MAS) in bdytes.

The possible return code values are:

0 = Success:

7 = Falilure: Invalié KIND value
10 = Failure: Invalid KEY1

39 = Failure: No more core memory.

No entity is created for the return codes of failure (7, 10, 39).

4-6

CI UM560240031U

July 1989
MAECRN
FUNCTION: Create an entity with a constituent list of a given size.
FORMAT: MAECRN(ENTDEF,KEYC,KEYE,NUM, IRC)
INPUT:
ENTDEF : ENTDATA
The application data block that contains the
entity definition.
KEYC : ANYKEY
The entity or list of entities to be made
constituents of the entity being created.
NUM : INTEGER
The size of the constituent list of the
entity being created.
OUTPUT:
KEYE : ENTKEY
The key of the newly created entity.
RC : INTEGER

The return code.

DESCRIPTION: The entity is added to the model. A constituent list of the
given size is created and the constituent entities are added.

A nil key may be used if the entity being created is to have
no constituents at this time. A full word integer zero can be
used as a nil key.

The possible return code values are:

0
7

9

38, 39, 40

Success
Failure:

Failure:

Failure:

Illegal KIND value or model
corrupted.

Constituent key is not an entity
or an application list.

No more core memory.

No entity is created for failures (7, 9, 38, 39, 40).

CI UM560240031U
July 1989

4.3.2 Query Operatjons

These operations are used to retrieve information for a specified entity
and load it into the application memory area.

The query routines are shown in the Table 4-2, and the following pages.
TABLE 4-2
QUERY ROUTINES

DESCRIPTION ROUTINE

Get the KIND value of a specific entity. MAEGKN

Get the ADB of a specific entity. MAEGTK

Determine the number of users. MAEUSR
4-8

CI UM560240031U
July 1989

MAEGKN
FUNCTION: Get the KIND value of a specific entity.
FORMAT: MAEGKN(KEY1,KIND,IRC)
INPUT:
KEY1 : ENIKEY .
The entity whose kind is to be retrieved.
OUTPUT:
KIND : INTEGEE
The KIND value of the specified entity.
IRC : INTEGER

The return code.

DESCRIPTIOR: The stored ADB is located. The KIND value in the ADB is
retrieved.

The possible return code values are:

0
18

Success
Fajilure: KEY]1 is nil or not an entity.

4-9

CI UM560240031U
July 1989

MAEGTK
FUNCTION: Get the ADB of a specific entity.
FORMAT: MAEGTK(KEY1,ENTDEF,IRC)

INPUT:
KEY1 : ENIKEY
The key of the entity whose ADB is to be

copied.
OUTPUT:
ENIDEF : ERTBLOCK
The ADB to receive the stored entity.
IRC : INTEGER

The return code.
DESCRIPTION: The stored ADB is located and copied into the application data _
block. If KEY1l is nil, then a nil KIND and a zero length is
returned.

The possible return code values are:

Success
Failure: KEY1l is nil or not an entity.

[
[+ -]
nn

4-10

Cl UMb560240031U

July 1989
MAEUSR
FUNCTION: Determine the number of users for an entity or application
list of entities.
FORMAT: MAEUSR(KEY1,UEXIST,IRC)
INPUT:
KEYl : ANYKEY
The entity or application list of entities
whose users will be counted.
OUTPUT:

UEXIST : INTEGER
The value number of users.

IRC

(3

INTEGER
The return code.

DESCRIPTION: KEY)l may be either an entity key or an application list key.
If KEYl is an entity, the number of users of the entity is
returned. If KEYl is an application list, the number of
direct users of the entities on the list is returned.

The possible return code values are:

0 = Success

17 = Failure KEYl is not a valid ENTKEY OR
LISTKEY.

18 = Failure KEY1 is nil.

4-11

Fv———_'"—_'————'i

CI UM560240031U
July 1989

4.3.3 Update Operations

Update operations, presented in Table 4-3, and the following pages, are
used to update the ADB for specified entities. In general, the application
should use the MAEGTK function to get the ADB before the update function is

used.
TABLE 4-3
UPDATE OPERATIORS
DESCRIPTION ROUTINE
Update the attribute data block of an entity. MAEUD
4-12

CI UM560240031U

July 1989
MAEUD
FUNCTION: Update the attribute data block of an entity.
FORMAT: MAEUD(KEY1 ,ENTDEF, IRC)

INPUT:
KEY1 : ENTKEY
The key of the entity to be updated.

ENTIDEF : ADB
The ADB supplying the update values.
OUTPUT:
IRC : IRTEGER

The return code.

DESCRIPTION: The ADB of KEY1l will be updated with the given ADB values.
The value of KIND must agree with the working form copy.
Otherwise, an error will result. If the length is greater
than the current length, then a new ADB will be created with
more space.

The possible return code values are:

0 = Success
1 = Failure Kind or given key is undefined.
6 = Failure Cannot update entity.
18 = Failure KEY1 is nil.
38, 39, 40 = Failure No more core memory.

Cl UM560240031U
July 1989

4.3.4 Delete Operations

These operations address how you delete entities from the MAS WF model.
The entities in the working model currently are grouped into the following
classifications:

o Dependent
o Support
o Primary
o Secondary.

Delete rules have been established for the entities in these
classifications. For a new entity kind, the default classification is
"Dependent” unless it is otherwise defined.

Delete Rules - The delete rules, shown in Table 4-4, apply to the
constituent relationships with which entities are defined. They
determine whether a constituent entity can be deleted by checking each
of its user entities. For example, the delete rules applied to entity
(A) in relation to a specific user entity (B) may be different than the
delete rules for that same entity (A) in relation to another specific
user entity (C).

The action taken for the IDBMAS delete classifications are determined by
the combinations of yesno (YN) answers to the following conditions, posed as
questions:

l. Can this constituent entity be deleted from a specific user entity?

2. Does the deletion of this (constituent) entity cause deletion of a
specific user?

3. Does deletion of a specific user cause deletion of this entity
(constituent)?

CI UM560240031U
July 1989

TABLE 4-4
DELETE RULES

CONDITION

1)

(2) | (3 DELETE CLASSIFICATION

-

N N Dependent
N Y Support
Y N Primary
N N Secondary

The delete classifications are defined as follows:

Dependent

Support

Primary

Secondary

Constituent entity cannot be deleted because the user
entity is dependent on its existence. The user entity may
be deleted without deleting the constituent entity.

Constituent entity cannot be deleted because the user
entity is dependent on its existence. The user entity may -
be deleted; however, the constituent entity will also be
deleted unless another user entity does not permit the
deletion of the constituent entity.

Constituent entity can be deleted, but only if the user
entity can, and will, also be deleted. The user entity may
be deleted without the constituent entity being deleted.

If the number of constituents falls below an established
minimum, the constituent entity can be deleted and, if
possible, the user entity will also be deleted. If the
user entity cannot be deleted, none of the minimum
constituents can be deleted. If the number of constituents
is greater than or equal to the minimum, the constituent
entity can be deleted.

Test routines are provided to return the entities or lists that would be
deleted if actual delete routines were used.

Delete Routines - The IDB/MAS delete routines are presented in Table
4-5, and the following pages. The first two routines actually delete
entities (MAED, MAEDI). The third and fourth routines test the delete
function, allowing the programmer to see the results of a potential delete
vithout modifying the stored data (MAEDT, MAEDTI).

4-15

CI UM560240031U
July 1989

When deleting a list of entities that includes users and constituents,
the list should be ordered so that the users are processed before the
constituents. The routines MALROR and MALRORI perform this function on an
application list. (An entity constituent 1list should never be reordered.)

TABLE 4-5
DELETE ROUTINES

DESCRIPTION ROUTINE
Delete an entity or list of entities. MAED
Delete an entity or list of entities and the inclusive MAEDI
constituents.
Delete test an entity or list of entities. MAEDT
Delete test an entity or list of entities and the MAEDTI

inclusive constituents.

4-16

- = came . we———

FUNCTIORN:

FORMAT:

DESCRIPTION:

MAED

Cl UM560240031U
July 1989

Delete an entity or list of entities.

The entity or list of entities to be

The 1list of entities marked for deletion.

MAED(KEY1,KEY2,IRC)
INPUT:
KEY1 : ANYKEY
deleted.
OUTPUT:
KEY2 : LISTKEY
IRC : INTEGER

The return code.

KEY1 may be either an entity key or a list key, and the order
of the entities in the list may be important. KEY2 will list
any entities from the KEYl list that were not deleted. If all
entities are deleted, the mark list will be empty.

The possible return code values are:

38, 39,

0 =
17 =

40
42
-3
-7

Success
Failure

Failure
Failure
Warning
Warning

KEY]1l is not a valid entity key or
list key.

No more core memory.

Delete rules defined incorrectly.
KEY1l is nil.

No entities marked for delete.

No mark list is created for failures or warnings.

4-17

CI UM560240031U

July 1989
MAED]
FUNCTION: Delete an entity or list of entities and their inclusive
constituents.
FORMAT: MAEDI(KEY1,KEY2,IRC)
INPUT:
KEY1 : ANYKEY
The entity or list of entities to be
deleted.
OUTPUT:
KEY2 : LISTKEY
The list of entities marked for delete.
IRC : INTEGER

The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key, and the order
of the entities in the list may be important. KEY2 will list
any entities from the KEYl list that were not deleted. If all
entities are deleted, the mark list will be empty.

The possible return code values are:

0 = Success

17 = Fallure
38, 39, 40 = Failure
42 = Failure
-3 = Warning
-7 = Warning

KEY]1l is not a valid entity key or
list key.

No more core memory.

Delete rules defined incorrectly.
No entities to be tested for
delete, or no entities would be
deleted.

No entities marked for delete.

No mark list is created for failures or warnings.

4-18

Cl UM560240031U
July 1989

MAEDT
FUNCTION: Delete test an entity or list of entities.
FORMAT: MAEDT(KEY1,KEY2,KEY3,IRC)
INPUT:
KEY1 : ANYKEY
The entity or list of entities to be tested.
OUTPUT:
KEY2 : LISTKEY
The list containing entities that would be
deleted by MAED.
KEY3 : LISTKEY
The list containing entities that would be
marked by MAED.
IRC : INTEGER

The return code.
DESCRIPTION: The MAEDT delete routine simulates the output of the MAED
routine without actually deleting the entities or marking them
inactive.

The possible return code values are:

0 = Success

17 = Fallure KEY1l is not a valid entity key or

list key.
38, 39, 40 = Fallure No more core memory.

42 = Failure Delete rules defined incorrectly.

-3 = Warning No entities to be tested for
delete or no entities would bde
deleted.

-7 = Warning No entities marked for delete.

4-19

CI UM560240031U

July 1989
MAEDTIL
FUNCTION: Delete test an entity or list of entities and their inclusive
constituents.
FORMAT: MAEDTI(KEY1l,KEY2,KEY3,IRC)
INPUT:
KEY1 : ANYKEY
The entity or list of entities to be tested.
OUTPUT:
KEY2 : LISTKEY
The list containing entities that would be
deleted by MAEDI.
KEY3 : LISTKEY
The 1ist containing entities that would be
marked by MAEDI.
IRC : INTEGER

The return code.
DESCRIPTION: The MAEDTI delete routine simulates the output of the MAEDI
routine without actually deleting the entities or rendering
them inactive.

The possible return code values are:

0 = Success

17 = Failure KEY]1l is not a valid entity key or

list key.
38, 39, 40 = Failure Ko more core memory.

42 = Fallure Delete rules defined incorrectly.

-3 = Warning No entities to be tested for
delete or no entities would be
deleted.

~7 = Warning No entities would be marked for
delete.

4-20

r—

CI UM560240031U
July 1989

4.3.5 Activate Operations
These operations are used to activate an entity. An entity is
deactivated when a delete was attempted, but was not completed because of

the user's dependency condition on the entity. (See Delete Operations
Section.)

The activate routines are shown in Table 4-6 and the following pages.
TABLE 4-6

ACTIVATE ROUTINES

DESCRIPTION ROUTINE
Activate an entity or list of entities. MAEA
Activ..e an entity or list of entities and their MAEAI

inclusive constituents.

Find the present value of the activation setting for MAEAV
an entity.

o Activation is not the same as rejection after a delete. If an entity
was deleted, then it cannot be recovered with these functions.

o Activation functions will activate any entity regardless of when or how
it was made inactive.

4-21

CI UM560240031U
July 1989

MAEA
FUNCTION: Activate an entity or list of entities.
FORMAT: MAEA (KEY1,IRC)
INPUT:

KEY1 t ANYKEY

The entity or list of entities to be
activated.

OUTPUT:
IRC : INTEGER
The return code.

DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1l is an
entity key then only that entity will be activated. If KEY1
is a list key then all entities in the list will be
activated.

The possible return code values are:

0 = Success
17 = Failure KEY1l is not a valid entity key of
list key.
18 = Failure KEY1l 1is nil.
38, 39, 40 = Failure No more core memory.

4-22

FUNCTION:

FORMAT:

activated.

DESCRIPTION:

CI UM560240031U
July 1989

MAEAL

Activate an entity or list of entities and their inclusive
constituents.

MAEAI(KEY1,IRC)

INPUT:
KEY1 : ANYKEY
The en-ity or list of entities to be

OUTPUT:
IRC INTEGER

The return code.

KEY1l may be either an entity key or a list key. If KEYl is an
entity key then only that entity and its inclusive
constituents will be activated. If KEYl is a list key then

all entities in the 1list and their inclusive constituents will
be activated.

Refer to the System Overview Section for further explanation
of inclusive constituents.

The possible return code values are:

38, 39,

0 = Success

17 = Failure KEY1 is not a valid entity key or
list key.
18 = Fajlure KEY]1 is nil.
40 = Failure No more core memory.
4-23

CI UM560240031U

July 1989
MAEAV
FUNCTION: Find the present value of the activation setting for an entity.
FORMAT: MAEAV(KEY1l,IAVAL,IRC)
INPUT:

KEY1 : ENTKEY
The entity to be examined.

OUTPUT:
IAVAL INTEGER
The activation code.
= 0 if set for delete
=1 i{f not set for delete
IRC : INTEGER

The return code.

DESCRIPTION: Returns the current value of the activation setting for the
specified entity.

The possible return code values are:
0 = Success

18 = Failure KEY1l is nil.
38, 39, 40 = Failure No more core memory.

4-24

CI UM560240031U
July 1989

4,3.6 Application Flag Operations

These operations are used to query or set any application accessible flag
associated with an entity.

The Application Flag routines are shown in Table 4-7, and the following
pages.

TABLE 4-7
APPLICATION FLAG OPERATIONS

DESCRIPTIOR ROUTINE

For all entities in the model, reset the specified flag. MAERST

For all entities in the model, reset the process flag and MABRST
the application flag.

For an entity or list of entities, update the MAUPDT
specified flag.

For the constituents of an entity or list of MACPDT
entities, update the specified flag.

For the inclusive constituents of an entity or list of MAESCI
entities, update the process flag.

For an entity, query the specified flag. MAQURY

Determine whether the user compresses with its MAECQY
constituent.

Create a 1list of constituents with which the input MAECMP
entity compresses.

4-25

CI UM560240031U

July 1989
IABLE 4-7 (contd.)
DESCRIPTION ROUTINE
Reset Process Flag for all entities in the model. MAESWA

Set the Process Flag in an entity or list of entities.

MAESWT

Find the Process Flag setting of an entity.

MAESVL

4-26

CI UMb560240031U

July 1989
MAERST
FUNCTION: Reset given application accessible flag in all entities in the
model.
FORMAT: MAERST(FLAGNAME, IRC)
INPUT:

FLAGNAME : NAMTYP
The name of the flag to be reset in all

entities in the model. Can have the
following values:

1) /MRDFLG' activation flag

2) /PRCFLG' process flag

3) /ABSFLG' absent/present flag
4) /APLFLG' application flag

OUTPUT:
IRC : INTEGER
The return code.

DESCRIPTION: Determine what flag is to be reset in every entity in the
model. Resets that flag to /off'.

The possible return code values are:

0 = Success
34 = Failure Invalid flag name.
35 = Failure No model established.
38, 39, 40 = Fajlure No more core memory.

4-27

CI UM560240031U

July 1989
MABRST
FUNCTION: Reset the process and application flags on each entity in the
working form model.
FORMAT: MABRST(IRC)
INPUT:
NOKRE
OUTPUT:

IRC s INTEGER
The return code.

DESCRIPTION: For each entity in the working formr model, the process and
application SYSUSE flags are turnet off.

The possible return code values are:

0 = Success
35 = Failure No model has been established.

4-28

CI UM560240031U

July 1989
MAUPDT
FUNCTION: Update the value of a given application accessible flag for an
entity or list of entities,
FORMAT: MAUPDT(KEY1,FLGNAME ,FLGVAL,IRC)
INPUT:
KEY1 : ANYKEY

The entity or list of entities whose
specified flag value will be updated.

FLAGNAME RAMTYP

The name of the flag to be updated. Can have
the following values:

1) /MRDFLG'
2) /PRCFLG'
3) /ABSFLG'
4) /APLFLG'

FLGVAL : INTEGER

activation flag
process flag
absent/present flag
application flag

The value of the specified flag to be used
when updating.

0 = false
1l = true

IRC

INTEGER

The return code.

DESCRIPTION: Determine which flag is to be updated, and replace that value.

The possible return code values are:

0 = Success
17 = Failure
34 = Failure
38, 39, 40 = Failure

4-29

KEYl is nil or not an entity.
Invalid flag name.
No more core memory.

FUNCTION:

FORMAT:

DESCRIPTION:

CI UM560240031U
July 1989

MACPDT

Update a specified SYSUSE flag value for the constituents of
an entity or a list of entities.

MACPDT(KEY1,FLGNAME ,FLGVAL,IRC)

INPUT:

KEY1

FLGNAME

FLGVAL

OUTPUT:

IRC

o

.0

ANYKEY
The key of an entity or list of entities
whose constituents will be updated.

NAMTYP
The name of the flag to be updated. It can
have the following values:

1) /MRDFLG' activation flag

2) /PRCFLG' process flag

3) /ABSFLG' absent/present flag
4) /APLFLG' application flag

INTEGER

The value of the specified flag to be used
when updating.

0 = False

1 = True

INTEGER
The return code.

Determine what value of a flag is to be updated. Collect the

constituent entities to be updated. Update the entities.

The possible return code values are:

38, 39,

0
17

18
34
40
-6

Success
Failure

Failure
Failure
Failure
Warning

KEY1l is not a valid entity key or
list key.

KEY1l 1s nil.

Undefiried flag name.

No more core memory.

The entity or list of entities had
no constituents.

4-30

Cl UM560240031U
July 1989

MAESCI

FUNCTION: Set or reset the process flag for the inclusive constituents
of an entity or a list of entities.

FORMAT: MAESCI(KEY1,ISWT,IRC)
INPUT:
KEY1 + ANYKEY
The key to an entity or list of entities.
ISWT : INTEGER
The ordinal value of true or false.
OUTPUT:

IRC : INTEGER
The return code.

DESCRIPTION: Given a valid key, the inclusive constituents of an entity or
list of entities are collected. Each collected constituent
entity's process flag is updated with the given value.

The possible return code values are:

0 = Success
17 = Failure KEY1l is not a valid entity key or
list key.
18 = Failure KEY]l is nil.
38, 39, 40 = Failure No more core memory exist.
-6 = Warning The entity or 1list of entities had

no constituents.

4-31

! FUNCTION:
the entity.

FORMAT:

INPUT:
KEY1

FLAGNAME

OUTPUT:

FLGVAL

IRC

DESCRIPTION:

C1 UM560240031U
July 1989

MAQURY

Determine the value of a given application accessidle flag for

MAQURY(KEY1,FLAGNAME,, FLGVAL , IRC)

ENTIKEY
The entity whose specified
be retriewved.

flag value is to

NAMTYP
The name of the flag to be
have the following values:

retrieved. Can

1) /MRDFLG' activation flag

2) /PRCFLG' process flag

3) /ABSFLG' absent/present flag
4) /APLFLG' application flag

IRTEGER

The value of the specified flag.
0 = false

l = true

INRTEGER
The retarn coede.

Determine vhich flag is to be retrieved, and return that value.

The possible return code values are:

0 = Success

17 = Fajilure

34 = Fallure

) 38, 39, 40 = Failure

KEY1 is nil or not an entity.
Invalid flag name.
No more core memory.

4-32

Cl UM560240031U

July 1989
MAECOY
FUNCTION: Determine whether the user compresses with its constituent.
FORMAT: MAECQY(KEY1,KEY2,CMPFLG,IRC)
INPUT:
KEY1 : ENTKEY
. Key of the entity whose consticuent is to be
checked.
KEY2 : ENTKEY
Key of the constituent whose rule is to be
checked.
OUTPUT:
CMPFLG : INTEGER
Value of the user's compress rule in relation
to its constituent.
1l = true
0 = false
IRC : INTEGER

The return code.

DESCRIPTION: Query constituent compress rule to its user.

The possible return code values are:

0
17

18
38, 39, 40
42

No

Success
Failure

Failure
Failure
Failure

KEY1l is not a valid entity key or
1list key.

KEY1 is nil.

No more core memory.

Delete rules defined incorrectly.

value is returned for the return codes of failure.

4-33

CI UM560240031U

July 1989
MAECMP
FUNCTION: Create a list of constituents with which the input entity
compresses.
FORMAT: MAECMP(KEY]1,KEY2,IRC)
INPUT:
KEY1 : ENTKEY
Key of the entity thats compressibility is
determined by the constituent(s).
OUTPUT:
KEY2 : LISTKEY
List of the constituents that cause the
compression of the input entity.
IRC : INTEGER

Return code
DESCRIPTION: KEY2 is initialized to nil. Each constituent whose delete
rule states that the input entity will be compressed will be
added to KEY2.

The possible return code values are:

0 = Success
17 = Failure KEYl is not a valid entity key or
1list key.
18 = Failure KEY1l is nil.
38, 39, 40 = Failure Ro more core memory.
42 = Failure Delete rules defined incorrectly.
-6 = Warning The entity or list of entities had

no constituents.

No list is created for failures or warnings.

4-34

CI UM560240031U

July 1989
MAESWA
FUNCTION: Reset Process Flag for all entities in the model.
FORMAT: MAESWA(IRC)
INPUT:
NONE
OUTPUT:

IRC : INTEGER
The return code.

DESCRIPTION: The Process Flag is set to OFF in all entities in the
working-form model.

The possible return code values are: .

0 = Success
38, 39, 40 = Failure No more core memory.

4-35

CI UM560240031U

July 1989
MAESWT
FURCTION: Set the Process Flag in an entity or a list of entities.
FORMAT: MAESWT(KEY1,ISWT,IRC)
INPUT:
KEY1 s ANYKEY
The entity or list of entities whose process
flag is to be set.
ISWT : INTEGER
The input value of the process flag.
OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: The process flag will be set to the value specified by ISWT.
If KEY]l is an entity key, then the flag in that entity will be
set. If KEYl is a list key, then the flag in all entities
referenced by the list will be set. ISWT should be "1" for
flag setting of true and "0" for flag setting of false.

The possible return code values are:

0 = Success
17 = Failure KEY1l is not a valid entity key or
list key.
18 = Failure KEY1l is nil.
38, 39, 40 = Failure No more core memory.

4-36

C1 UM560240031U

July 1989
MAESVL
FUNCTION: Find the Process Flag setting of an entity.
FORMAT: MAESVL{KEY1l,1SET,IRC)
INPUT:
KEY1 s KEY
: The entity for which the flag setting is
wanted. This must be an entity key.
OUTPUT:
ISET : IRTEGER
The output value of the process flag.
IRC : INTEGER
The return code,
DESCRIPTION: The value of the process flag for KEYl will be returned. If

the flag is true, then the value "1" will be returned. If the
flag is false, then the value "0" will be returned.

The possible return code values are:

0 = Success
18 = Failure

38, 39, 40 = Failure

KEY]l is not a valid entity key or
list key,
No more core memory.

4-37

C1 UMb560240031U°
July 19898

4.4 t O on

This section explains the use of the MAS list operations. A list is a
temporary internal structure that contains references to entities. Since
the application can build lists that take up space in the working model, it
is necessary that the applications periodically delete the lists that are no
longer needed.

Many list operations will accept either a list key or an entity key as
input keys. When an entity key is supplied, 't is assumed that the
constituent list of the entity becomes the ligt to be operated on.

Some operations on lists may result in the same entity being in the
output list more than once. The operation (MALRDE) can be used to remove
duplicate entities from the list.

‘1 operations that create an application list automatically set the
position of the list to the beginning. Once a list has been read to the
end, it must be reset before the sequential read process can begin again.

When an entity is deleted, all references to it in all application lists
are automatically removed and the current positions of the affected lists
are adjusted to retain their original meaning.

The basic list operations can be categorized by the following functions:

Create application lists

Query application lists and constituent lists
Update application lists and constituent lists
Update application lists only

Boolean operations

Delete application lists.

Included with the 1ist operations descriptions are the error and warniug
messages that may be returned. Appendix C contains a complete list of these
messages along with their numeric codes.

Cl UM560240031U
July 1989

4.4.1 Create Operations - Application Lists

These operations create application lists. The first two create empty
lists to be updated by the user routine. The others create lists of
entities based on some selection criteris.

The create routines are shown Table 4-8, and the following pages.

IABLE 4-8
CREATE ROUTINES

DESCRIPTION ROUTINE
Creates an empty list. MAL
Create an empty list of specified size. MALN
Create a list of entities with a given KIND. MALK
Create a list of entities with a given KIND that are MALKL

found within another list.

Makes a copy of & list. MALCPY
Create an application list of constituent entity MAEC
references.
Create an application list of inclusive constituent MAECI
entities.
Create an application list of inclusive constituents MAECIK
by KIFD.

4-39

Cl UM560240031U

July 1989
TABLE 4-8 (contd.)

DESCRIPTIOR ROUTINE
Create an application list of entities of a specified MALKC
KIND taken from the constituents of an entity or from
the constituents of a list of entities.
Create an application list of user entity references. MAEU
Create an application list of inclusive user entities. MAEUI
Create an application list of inclusive users by KIND. MAEUIK

Create an application list of entities of a specified KIND
taken from the users of an entity or from the users of a
list of entities.

MALKU

4-40

P

CI UM560240031U

July 1989

MAL

FUNCTION: Creates an empty list.

FORMAT: MAL(KEY1,IRC)

INPUT:
NONE

OUTPUT:
KEY1 :

IRC

LISTKEY
The key of the empty list.

INTEGER
The return code.

DESCRIPTION: An empty list is created.

The possible return code values are:

0 = Success
3 = Failure
38, 39, 40 = Failure

Cannot create list.
No more core memory.

4-41

CI UMS560240031U"
July 1989

MALN
FUNCTION: Create an empty list of specified size.
FORMAT: MALN(LSIZE,KEY1,IRC)
INPUT:
LSIZE : INTEGER

The number of entries in the list.

OUTPUT:
KEY1 : LISTKEY
The key of the empty list of specified size.
IRC INTEGER
The return code.

DESCRIPTION: An empty application list will be created with sufficient
space to accommodate LSIZE entries. All entries are
initialized to nil.

The possible return code values are:

0 = Success

3 = Failure Cannot create list.

15 = Fallure Requested a list size too large.
38, 39, 40 = Fallure Ko more core memory.

Cl UM560240031U

July 1989
MALK
FUNCTION: Create a list of entities with a given KIND.
FORMAT: MALK(KIND,KEY1,IRC)
INPUT:
KIND : INTEGER
A valid KIND code.
OUTPUT:
KEY1 : LISTKEY
The 1ist of all eutities of the specified
KIND.
IRC : INTEGER

The return code.

DESCRIPTION: KEY1l is initialized to nil. If KIND is a valid value, all
entities of the given KIND will be copied into KEYI.

The possible return code values are:
0 = Success
38, 39, 40 = Fajlure No more core memory exists,
-1 = Warning No such kind exists.

No list is created for fallures or warnings.

4-43

-

Cl UM560240031U

July 1989
MALKL
FUNCTION: Create a list of entities with a given KIND that are found
within another list.
FORMAT: MALKL(KEY1,KIND,KEY2,IRC)
INPUT:
KEY1 : ARYKEY
The entity or list of entities whose list is
to be searched for the specified KIND.
KIND : IRTEGER
The KIND code of an entity.
OUTPUT:
KEY2 : LISTKEY
The list that will contain all entities of
the given KIND found within the list
specified by KEY1.
IRC : INTEGER

The retura code.

DESCRIPTION: KEY2 is initialized to nil. If KEY]1l is an entity key, copy
all constituents of the given kind on KEY2. If KEYl is a list
key, put all entities on the list of the given kind on KEY2.

The possible return code values are:

0 = Success

14 = Failure

17 = Failure

18 = Failure

38, 39, 40 = Failure
-1 = Warning

-6 = Warning

Model is corrupted.

KEY1l is not a valid entity key
or list key.

KEY1l is nil.

No more core memory exists.

No such kind exists.

The entity or list of entities
had no constituents or entities
of the given kind.

No list is created for failures or warnings.

4-44

CI UM560240031U
July 1989

MALCPY
FUNCTION: Makes a copy of a list.
FORMAT: MALCPY(KEY1,KEY2,IRC)
INPUT:
KEY1 : LISTKEY
A list key whose entries will be copied.
OUTPUT:
KEY2 : LISTKEY
The new list that will receive a copy of KEY1.
IRC H IRTEGER

The return code.

DESCRIPTION: KEY2 will be created. The elements of KEY1l will be copied
into KEY2.

The possible return code values are:

0 = Success

17 = Failure KEYl is nil or not an
application list.
38, 39, 40 = Failure No more core memory.
4-45

CI UM560240031U

July 1989
MAEC
FUNCTION: Create an application list of constituent entities.
FORMAT: MAEC(KEY1,KEY2,IRC)
INPUT:

KEY1 : ANYKEY
The entity or list of entities for which a
list of direct constituents is wanted.

OUTPUT:
KEY2 : LISTKEY
The returned key of the application list of
direct constituents.
IRC : INTEGER

The return code.

DESCRIPTION: KEY2 is created. If KEY]l is an entity key then the
constituent list of KEYl will be copied into KEY2. If KEY1 is
a list key then the constituent lists of each entity will be
copied into KEY2.

The possible return code values are:

0 = Success
17 = Fallure KEY]l is not a valid entity key
or list key.
18 = Failure KEY1 is nil.
39 = Fallure No more core memory.
-6 = Warning The entity or 1ist of entities

had no constituents.

No 1ist is created for the return codes of failure (17, 18,
39) or warning (-6), and KEY2 {s nil.

4-46

FUNCTION:

FORMAT:

DESCRIPTION:

ROTE:

The possible

CI UM560240031U
July 1989

MAECI

Create an application list of inclusive entities.

MAECI(KEY1,KEY2,IRC)
INPUT:
KEY1 :t ARYKEY

The entity or list of entities whose
inclusive counstituents are wanted.

OUTPUT:
KEY2 : LISTKEY
The returned key of the inclusive application
1ist of constituents.
IRC : INTEGER

The return code.

KEY2 is created. If KEYl is an entity key, then the inclusive
constituent 1list of KEYl will be copied into KEY2. If KEY1 is
a list key, then the insclusive constituent lists of each
entity will be copied intes KEY2. KEY1l is not included in
KEY2. RNo duplicate keys will exist.

See the System Overview Section, page 1.5.2, for further
explanation of inclusive constituents.

return code values are:

0 = Success

17 = Failure KEYl is not a valid entity key
or list key.

18 = Failure KEY1l is nil.

39 = Failure Ro more core memory.

-6 = Warning The entity or list of entities

had no constituents.

No list is created for the return codes of failure (17, 18,
39) or warning (-6), and KEY2 is nil,

4-47

July 1989
MAECIK
FUNCTION: Create an application list of inclusive constituents of a
specified KIND.
FORMAT: MAECIK(KEY1,KIND,KEY2,IRC)
INPUT:
KEY1 : ANYKEY
The entity or list of entities whose
inclusive constituents are to be searched for
by specified KIND.
KIRD : INTEGER
The KIND code of an entity or an entity class.
OUTPUT:
KEY2 : LISTKEY
The key of a list which will contain all
entities of the specified KIND found within
the inclusive constituents of KEY1.
IRC : INTEGER

CI UM560240031U

The return code.

DESCRIPTION: KEY2 is initialized to nil. If KEYl is a valid entity key,
then the inclusive constituents of the specified KIND will be

copled into KEY2.

If KEY1l i3 a valid list key, then the

inclusive constituents of all entities on the list of the
specified KIND will be copied into KEY2. No duplicates will

exist.

The possible return code values are:

0 = Success
17 = Failure

18 = Failure
38, 39, 40 = Failure
-6 = Warning

KEY1l is not a valid entity key
or list key.

KEY1 is nil.

No more core memory.

The entity or list of entities
had no constituents of the given
KIND.

No list is created for the return codes of failure or warning.

4-48

CI UM560240031U

July 1989
MALKC
FUNCTION: Create a list of entities of a specified kind found within the

constituent list of an entity or the constituent lists of a
list of entities.

FORMAT: MALKC(KEY1,KIND,KEY2,IRC)
INPUT:
KEY1 : ARYKEY
The key to an entity or list of entities.
XIRD H ORD_KIND
Any valid kind value.
OUTPUT:
KEY2 : LISTKEY
A 1ist of entities found within the
constituent list of an entity or the
constituent lists of a list of entities.
IRC : INTEGER

The return code.

DESCRIPTION: Given a valid kind value, the constituent of an entity or list
of entities are collected. For each collected entity of the
given kind, copy into KEY2.

The possible return code values are:

0 = Success
17 = Failure

18
38, 39, 40
-1
-6

Failure
Failure
Warning
Warning

-1l = Warning

KEY1l is not a valid entity key
or list key.

KEY1l is nil.

No more core memory.

Kind value is undefined.

The entity or list of entities
had no constituents of the given
kind.

The entity or list of entities
had no constituents.

No list is created for failures or warnings.

4-49

Cl UMb560240031U

July 1989
MAEU
FUNCTION: Create an application list of user entity references.
FORMAT: MAEU(KEY1,KEY2,IRC)
INPUT:
KEY1 s ANYKEY

The entity or 1ist of entities for which a
list of direct users is wanted.

OUTPUT:
KEY2 s LISTKEY
Returned key of the application list of
direct users.
IRC H INRTEGER

The return code.

DESCRIPTION: KEY2 is initialized to nil. If KEYl is a valid entity key,
then the user list of KEYl1l will be copied into KEY2. If KEY1

is a valid list key, then the user lists of each entity will
be copied into KEY2.

The possible return code values are:

0 = Success

17 = Failure KEY1l i{s not a valid entity key
or list key.
18 = Failure KEY1 is nil.
38, 39, 40 = Failure No more core memory.
~6 = Warning The entity or list of entities

had no users.

No list is created for the return codes of failure or warning.

4-50

CI UM560240031U

July 1989
MAEUT
FUNCTION: Create an application list of inclusive user entities,
FORMAT: MAEUI(KEY1,KEY2,IRC)
INPUT:
KEY1 : ARYKEY

The entity or list of entities whose
inclusive u~ers are wanted.

OUTPUT:
KEY2 s LISTKEY
The returned key of the inclusive application
list of users.
IRC : INTEGER

The return code.

DESCRIPTION: KEY2 is initialized to nil. If KEY! is a valid enti.y key,
then the inclusive user list of KEYl will be copied into
KEY2. If KEYl is a valid list key, then the inclusive user
lists of each entity will be copied into KEY2. KEY1l is not
included in KEY2. There will be no duplicates.

The possible return code values are:

0 = Success

17 = Failure KEY1l is not a valid entity key
or list key.
18 = Failure KEY1l is nil.
38, 39, 40 = Fajlure No nore core memory.
-6 = Warning The entity or list of entities

had no users.

No 1list is created for failures cr warnings.

4-51

CI UM560240031U

July 1989
MAEUIK
FUNCTION: Create an application list of inclusive users by KIND.
FORMAT: MAEUIK(KEY1,KIND,KEY2,IRC)
IRPUT:
KEY1 : ANYKEY
The entity or list of entities whose
inclusive users are to be searched for by
specified KIND.
KIND : INTEGER
The KIND code of an entity or an entity class.
QUTPUT:
KEY2 : LISTKEY
The key of a list which will contain all
entities of the given KIND found within tne
inclusive users of KtYl.
IRC : INTEGER

The return code.

DESCRIPTION: KEY2 is initialized to nil. If KEYl is a valid entity key,

then the inclusive users of the given KIND will be copied into
If KEY1 is a valid list key, then the inclusive users
of all entities on the 1list of the given KIND will be copied
KEY2. Ro duplicates will exist.

KEY2.

into

The possible return code values are:

0 =
17 =

18
38, 39, 40
-6

Success
Failure

Failure
Failure
warning

KEY1l is not a valid entity key
or list key.

YEY1l is nil.

No more core memory.

The entity or list of entities
had no users of the given KIND.

No list is created for failures or warnings.

4-52

CI UMS560240031U

Julv 1989
MALKU
FUNCTION: Create a list of entities of a specified kind found within the
user list of an entity or the user lists of a 1list of entities.
FORMAT: MALKU(KXEY1,KIND,KEY2,IRC)
IRPUT:

KEY1 s ANYKEY
The key to an entity or list of entities.

KIRD : ORD_KIND

Any valid kind value.
OUTPUT:

KEY2 : LISTKEY
A list of entities found within the user list
of an entity or the user lists of a list of
entities.

IRC : INTEGER

The return code.
DESCRIPTION: Given a valid kind value, the users of an entity or list of
entities are collected. For each collected entity of the
given kind, copy into KEY2.

The possible return code values .re:

0 = Success

17 = Failure KEYl is not a valid entity key
or list key.
18 = Failure KEY1l is nil.
38, 39, 40 = Failure No more core memory exists.
-1 = Warning Kind value undefined.
-6 = Warning The entity or 1list of entitles
had no users of the given KIND.
=11 = Warning The entity or list of entities

had no users.

No list is created for fajilures or warnings.

4-53

p

CI UM560240031U
July 1989

4.4.2 Query Operations - Application Lists And Constitvent Lists

Table 4-9 shows routines that query application lists
lists: .

TABLE 4-9

and constituent

QUERY OPERATIONS -~ APPLICATION AND CONSTITUENT LISTS

DESCRIPTION ROUTINE
Determine the number of entries in a list. MALNO
Find the position in a list of a specified entity key. MALFND

Read the entity key at the specified position in the list. MALGIK

Read the next entry in a list. MALRD
Setup for reading in a forward direction. MALSTF
Setup for reading in reverse direction. MALSTR

Routines are further described on the following pages.

4-54

Cl UM560240031U
July 1989

MALNO
FUNCTION: Count the entities in a list.
FORMAT: MALNO(KEY1 ,KOUNT,IRC)
INPUT:
KEY1 : ANYKEY
The entity or list of entities to be counted
OUTPUT:
ROURT INTEGER
The number of entities in the list.
IRC : INTEGER

The return code.
DESCRIPTION: KEY1 may be either an entity key or a list key. If KEY1l is an
entity the number of constituents i{s returned. If KEYl is a °
list the number of entities on the list is returned.

The possible return code values are:

0 = Success

17 = Failure KEY1l is not an entity or an
application list.
38, 39, 40 = Failure No more core memory.

KOUNT is returned zero for all failures.

4-55

FUNCTION:

FORMAT:

DESCRIPTION:

CI UMS560240031U
July 1989

BALFRD

Find the position of an entity in a list., If KEYl is an
entity, find its position in the constituent list of that
entity.

MALFND(KEY1,KEY2,IFIRST,IPOS,IRC)

INPUT:
KEYl : ANYKEY
The entity or list of entities in which KEY2
is to be found.
KEY2 : ENTKEY
The entity to be found in KEYI.
IFIRST : INTEGER
The position in KEYl where the find operation
is to start.
OUTPUT:
IPOS : INTEGER
The position in KEY1l where KEY2 is found.
IRC : INTEGER

The return code.

KEY1l may be either an entity key or a list key. If KEY1 is a
1ist then KEY2 is found in the list. If KEYl is an entity,
then KEY2 is found in the constituent 1ist of KEYl. KEY2 must
be an entity key. The find starts at position IFIRST. Each
entity in KEYl is exacined for equality with KEY2 starting
with the specified position. If a match is found, then the
position is returned in IPOS. If there is no match, then IPOS
is returned as zero and IRC gignals an error. If there are
multiple matches, then only the first (leftmost) match is
returned in IPOS.

The possible return code values are:

38, 39,

0 = Success

17 = Failure KEY1l is not an entity or an
application list.
18 = Failure KEY1l is nil.
25 = Failure No match was found.
40 = Failure . No more core memory.
4-56

Cl UMS560240031U

July 1989
MALGIK
FUNCTION: Get the Nth Key from a list.
FORMAT: MALGTK(KEY1,IPOS,KEY2,IRC)
INPUT:
KEY1 : ANYKEY
The entity or list of entities to be
processed.
IPOS : INTEGER
The position in the lisc of the target entity.
OUTPUT:
KEY2 s ENTKEY
The requested key.
IRC H IRTEGER

The return code.
DESCRIPTION: 1If KEY1l is a list, get the IPOS entry from the list., If KEY1
is an entity, get the IPOS entry from the constituent list of
KEY1.
The possible return code values are:

0 = Success

14 = Fallure IPOS 1is outside the range of the
application list,
17 = Failure KEY1l is not an entity or an
application list.
38, 39, 40 = Failure No more core memory.
4-57

MALRD
FUNCTION: Read the next entry in a list.
FORMAT: MALRD(KEY1,KEY2,IRC)
INPUT:

KEY1 : ANYKEY
The entity or list of entities to be read.

OUTPUT:
KEY2 : ERTKEY
The entity of the next list entry. RNext
depends on the direction of the read set by
MALSTF or MALSIR.
IRC H INTEGER

The return code,
DESCRIPTION: The next entity in the list is returned. We recommend setting.
the direction by using MALSTF or MALSTR before the first time

this routine is used to read a list.

The possible return code values are:

0 = Success

17 = Failure KEYl is not a valid entity key
or list key.
32 = Failure Cannot read constituent lis .
33 = Fallure Cannot read constituent list.
38, 39, 40 = Failure No more core memory exists.
-5 = Warning End of list reached.
4-58

CI UM560240031U

July 1989
MALSIF
FUNCTION: Setup for reading in forward direction.
FORMAT: MALSTF(KEY1,IRC)
IRPUT:
KEYl : ANYKEY

The entity or list of entities to be
processed in a forward direction.

OUTPUT:
IRC INTEGER

The return code,

DESCRIPTION: If KEYl1l is an entity, then the constituent list of KEYl will
be set up for forward processing. If KEYl1l is an application
1ist, the list will be set up for forward processing.

The possible return code values are:

0 = Success
17 = Failure KEY]l is not a valid entity key
or list key.
18 = Failure KEY1l is nil.
32 = Failure Cannot read constituent list,
33 = Failure Cannot read constituent list.
38, 39, 40 = Failure No more core memory.

4-59

CI UM560240031U
July 1989

MALSTR
FUNCTION: Setup for reading in reverse direction.
FORMAT: MALSTR(KEY1,IRC)
INPUT:
KEYl : ANYKEY

The entity or list of entities to be
processed in the reverse direction.

OUTPUT:
IRC

1)

IRTEGER
The return code.

DESCRIPTION: 1If KEYl is au entity, then the constituent list of KEY1 will
be set up far reverse processing. If KEYl is an application
list, the 1izt will be set up for reverse processing.

The possible return code wvalues are:

0 = Success

17 = Failwe KEY1l is not a valid entity key
or list key.
18 = Failure KEY1 is nil.
32 = Failure Cannot read constituent list.
33 = Fallure Cannot read constituent list.
38, 39, 40 = Fallure No more core memory.
4-60

CI UM560240031U
July 1989

’ 4.4.3 Update Operations - Application Lists and Constituent Lists

Table 4-10 presents the update routines that apply to both application
lists and constituent lists:

TABLE 4-10
UPDATE OPERATIORS - APPLICATION AND CONSTITUENT LISTS

DESCRIPTIOR ' ROUTINE
Attach an entity or list of entities to a list. MALATC
Insert an entity or list of entities into a list. MALINS
Remove an entity from a list. MALRMV
Replace an entity in a list. MALRPL
Replace a 1ist (all of the entries). MALREP
Reverse the order of a list. MALRVS

Routines are further described on the following pages.

4-61

FUNCTION:

FORMAT:

DESCRIPTION:

EXAMPLE :

Cl UM560240031U
July 1989

MALATC

Attach an entity or list of entities to a list. If KEYl is an
entity then attach to the constituent list of that entity.

MALATC(KEY1,KEY2,IRC)
INPUT:
KEYl : ANYKEY

The entity or list of entities to which KEY2
is to be attached.

XEY2 t ANRYKEY
The entity or list to be attached to KEYI.
OOTPUT:
IRC b INTEGER

The return code.

KEY1 may be either an entity key or a list key. If KEY1 is a
list, then KEY2 is attached to the list. If KEYl is an
entity, then KEY2 is attached to the constituent list of

KEYl. This will make KEY2 a constituent of KEYl. KEY2 may be
either an entity key or a list key. If KEY2 is a list, then
the entire 1list is attached to KEYl. This is the same as
doing multiple attaches of an entity. If KEY2 is an entity,
then the entity is attached to KEYI.

See Sample Programs Section.

The possible return code values are:

0 = Success

9 = Failure XEY1 is nil.
10 = Failure KEY1l is not an entity or an
application list.
38, 39, 40 = Failure No more core memory.
4-62

FURCTION:

FORMAT:

DESCRIPTION:

Cl UM560240031U
July 1989

MALIRS

Insert an entity or list of entities into a list. If KEY1l is
an entity, then insert into the constituent 1list of that
entity.

MALINS(KEY1,KEY2,IPOS,IRC)

INPUT:
KEY1 ¢ ANYKEY
The entity or list of entities in which KEY2
is to be inserted.
KEY2 ¢ ARYKEY
The entity or list to be inserted in KEY1.
IPOS : INTEGER
The position in KEY1l where the insert is to
take place.
OUTPUT:
IRC H INTEGER

The return code.

KZY]l may be either an entity key or a list key. If KEYl is a
l1igt, then KEY2 i{s inserted in the list., If KEY1l is an
entity, then KEY2 is inserted in the constituent list of
KEYl. KEY2 may be either an entity key or a list key. If
KEY2 {8 a list, then the entire list is inserted in KEYl. If
KEY2 is an entity, then the entity is inserted in KEYl.

The insert takes place before IPOS. That is, the entity at
IPOS ia moved by one position if KEY2 is an entity or by the
number of elements in the list if KEY2 is a list. Then the
elements are moved into the vacated positions.

The possible return code values are:

38, 39,

0 = Success

14 = Failure Given position is outside range
of list.
17 = Failure KEY1l is not an entity or an
application list.
18 = Failure KEY1l {s nil.
32 = Failure Cannot read constituent list,
33 = Fallure Cannot read constituent list.
40 = Fallure No more core memory.
4-63

FUNCTION:

FORMAT:

DESCRIPTION:

Cl UM560240031U
July 1989

MALRMYV

Remove an entity from a list. If KEYl is an entity, then
remove it from the constituent list of that entity.

MALRMV(KEY1,IPOS,IRC)
INPUT:
KEYl : ANYKEY

The entity or list of entities from which an
entity is to be removed.

IPOS : INTEGER
The position, in the list, of the entity to
be removed.
OUTPUT:
IRC ¢ INTEGER

The return code.

KEYl may be either an entity key or a list key. If KEYl is a
list, then an entity is removed from the list. If KEYl {s an
entity, then an entity is removed from the constituent list of
KEYl. 1IPOS is the position number of the entity to be
removed. The MAS delete rules are used to see if the entity
can be removed from the constituent list. If the entity can
be removed, it is removed; and if it is the last constituent
in the 1list, the list is deleted. If the entity removed is
marked for delete, an attempt to delete the entity will occur.

The possible return code values are:

38, 39,

0 = Success

14 = Failure IPOS is outside range of list.

17 = Failure KEY1l i{s not a valid entity key
or list key.

18 = Fallure KEY1l is nil.

27 = Failure Delete rules prohibit delete.

32 = Failure Cannot read constituent list.

33 = Failure Cannot read constituent list.

40 = Failure No more core memory.

42 = Failure Delete rules defined incorrectly.

4-64

FUNCTION:

FORMAT:

DESCRIPTION:

Cl UM560240031U
July 1989

MALRPL

Replace an entity in a list. If KEYl is an entity, then
replace in the constituent list of that entity.

MALRPL(KEY1,KEY2,IP0S,IRC)

INPUT:
KEY1 : ANYKEY
The entity or list of entities in which an
entity is to be replaced.
KEY2 H ENTKEY
The entity that will replace an entity in
KEY1.
IPOS : INTEGER
The position of the entity in KEY1l to be
replaced,
OUTPUT:
IRC : INTEGER

The return code.

KEY]l may be either an entity key or a list key. If KEY1 is a
list, then an entity is replaced in the list. If KEYl is an
entity, then an entity is replaced in the constituent list of
KEYl. KEY2 must be an entity key. The entity at position
IPOS in KEY1l will be replaced by KEY2. If the entity being
replaced is "MARKED FOR DELETE," then an attempt is made to
delete the entity.

The possible return code values are:

0 = Success

14 = Failure IPOS is outside range of list.

17 = Failure KEY1l is not a valid entity key
or list key.

18 = Failure KEY1 is nil.

27 = Failure Delete rules prohibit delete.

32 = Failure Cannot read constituent list.

33 = Failure Cannot read constituent list.

38, 39, 40 = Failure No more core memory exists.

CI UMb560240031U "

July 1989
MALREP
FUNCTION: Replace a list. If KEYl is an entity, then replace the
constituent list of that entity.
FORMAT: MALREP(KEY1,KEY2,IRC)
INPUT:
KEY1 ¢ ANYKEY
The entity or list of entities to be replaced.
KEY2 : ANYKEY
The entity or list to replace KEYl.
OUTPUT:
IRC : IKTEGER

The return code.

DESCRIPTION: KEY1l may be either an »ntity key or a list key. If KEY1l is a
list, then KEY2 replaces KEYl. If KEYl is an entity, then the
constituent list of KEYl is replaced by KEY2. KEY2 may be
either an entity or a 1list key.

The possible return code values are:

0 = Success

17 = Failure KEY1l is not a valid entity key
or list key.
18 = Fallure KEY1 is nil.
32 = Fallure Cannot read constituent list.
33 = Failure Cannot read constituent list.
38, 39, 40 = Failure Ko more core memory.
4-66

CI UM560240031U

July 1989
MALRVS
FUNCTION: Reverse the order of the entities in a list.
FORMAT: MALRVS(KEY1,IRC)
INPUT:

KEY1 ¢ ANYKEY

The entity or list of entities in which the
order of the entities is to be reversed.

OUTPUT:
IRC : INTEGER
The return code.

DESCRIPTION: KEY] may be either an entity key or a list key. If KEYl is a
list, then the list is reversed. If KEYl is an entity, then
the constituent list is r¢ - ‘sed.

The possible return code values are:

0 = Success
17 = Failure KEY1l 1s not a valid entity key
or list key.
38, 39, 40 = Failure No more core memory exists.
-6 = Warning KEY1l is empty.

4-67

CI UM560240031U
July 1989

4.4.4 Update Operations - Applicatjon Lists Only

Table 4-11 shows routines that update an application list (they do not
apply to constituent lists):

TABLE 4-11
UPDATE OPERATIONS - APPLICATION LISTS

DESCRIPTION B ROUTINE
Reset an application list to be reused. MALRST
Remove duplicate entries from an application list. MALRDE
Sort the entries in an application list into MALROR

user-constituent order.

Sort the entries in an application list into inclusive MALRRI
user-constituent order.

Routines are further defined in the following pages.

4-68

Cl UM560240031U
July 1989

MALRST
FUNCTION: Reset an application list.
FORMAT: MALRST(KEYL,RC)
INPUT:
KEYL : LISTKEY
The key of the application list whose entries
are to be reset.
OUTPUT:
RC : IRTEGER

The return code.
DESCRIPTION: Given an application list that has one or more entries, all
entries will be removed from the list, thus maintaining the
size of the original list.

The possible return code values are:

0 = Success

17 = Failure KEY1l is not a valid entity key
or list key.
18 = Failure KEY1 i{s nil.
38, 39, 40 = Failure No more core memory.
4-69

CI UM560240031U

July 1989
MALRDE
FUNCTION: Remove duplicate entries in a list.
FORMAT: MALRDE(KEY1,IRC)
INPUT:

KEYl : LISTKEY
The input/output list.

OUTPUT:
IRC IRTEGER

The return code.

DESCRIPTION: Any duplicate entities found in the input list will be
removed. The change is made in-place. The first instance of
each entity will be kept.

The possible return code values are:

0 = Success
17 = Failure KEYl is not a valid entity key
or list key.
26 = Failure Duplicates not removed.
38, 39, 40 = Failure No more core memory.

4-70

C1 UM560240031U

July 1989
MALROR
FUNCTION: Reorder a list of entities so that the users appear at the
head of the list.
FORMAT: MALROR(KEYL,IRC)
INPUT:

KEYL : LISTKEY
Key of an application list.

OUTPUT:
IRC INTEGER

Return code

0 = Good return

<0 Critical error

»0 VWarning

DESCRIPTION: For each member of the list, search each of the remaining
members for its users; put users at the head of the list.

The possible return code values are:

0 = Success

15 = Error A list has too many members.
17 = Error Input key not a list key.
18 = Error Input key is nil.
38 = Error No more core avajlable.
4-71

Cl UM560240031U

July 1989
MALRRI (MALRORI)Y
FUNCTION: Sort the entities in an application list in inclusive user to
constituent order.
FORMAT: MALRRI(KEY,RRC) or MALRORI(KEY,RRC)
INPUT:

KEY : ANYKEY

The key to an entity or list of entities.

OUTPUT:

RRC : INTEGER
The return code.

DESCRIPTION: For each entity on the input list, its user list is expanded
inclusively. All users appearing on the input list will occur
before their constituents.

The possible return code values are:

0 = Success
17 = Failure

18 = Fallure
38, 39, 40 = Failure

KEY]l is not a valid entiry key
or list key.

KEY1l is nil.

No more core memory.

CI UMS560240031U
July 1989

4.4.5 PBoolean Operatjons - Application Lists snd Constituent Lists

For Boolean operations, there are two input lists and one output list.
The application is responsible for providing two input lists consistent with
the Boolean operation to be performed. No validation checking is done. If
one or both of the input lists contain duplicate entities, then the output
list may also contain duplicate entities. This result may not be consistent
with the Boolean theory operation being performed.

The Boolean routines are shown in Table 4-12, and the following pages.
IABLE 4-12
BOOLEAN ROUTINES

DESCRIPTION ROUTINE

Create a list from a Boolean "ANRD" on two input lists. MALAND

Create a list from a Boolean "NOT" on two input lists. MALNOT

Create a list from a Boolean "OR" on two input lists. MALOR

4-73

FUNCTION:

FORMAT:

DESCRIPTION:

Cl UM560240031U
July 1989

MALAND

Create a list from a Boolean "AND" on two input lists.

MALAND(KEY1,KEY2,KEY3,IRC)

INPUT:
KEY1 s ANYKEY
An entity or a list that is to be AND'ed.
KEY2 s ANYKEY
An entity or a list that is to be AND'ed.
OUTPUT:
KEY3 : LISTKEY
The list of entities that occurred in both
KEY1l and KEY2,
IRC : INTEGER

The return code.

KEY3 is initialized to nil. KEY]l may be either an entity key
or a list key. If KEYl is an entity key, then the constituent
list of KEYl is AND'ed with KEY2. If KEY]1l is a list key, then
KEYl i{s AND'ed with KEY2. KEY2 may be either an entity key or
a list key. If KEY2 {3 an entity key then the constituent
1ist of KEY2 is AND'ed with KEYl. If KEY2 is a list key then
KEY2 is AND'ed with KEY2. The list KEY3 is created,
corresponding to the set theoretical intersection of KEY1l and
KEY2.

The possible return code values are:

0 = Success

17 = Failure KEY1l is not a valid entity key
or list key.
18 = Failure KEY1l is nil.
38, 39, 40 = Failure No more core memory.
-6 = Warning There were no entities in common.

Ro list is created for failures or warnings.

4-74

FUNCTION:

FORMAT:

DESCRIPTION:

Cl UM560240031U
July 1989

MALNOT

Create a list from a Boolean “NOT" on two input lists.

MALNOT(KEY1,KEY2,KEY3,IRC)

INPUT:
KEY1 : ANYKEY
An entity or a list that is to be NOT'ed.
KEY2 : ANYKEY
An entity or a list that is to be NOT'ed.
OUTPUT:
KEY3 : LISTKEY
The 1ist of entities that occurred in KEY1
but not in KEY2.
IRC : INTEGER

The return code.

KEY3 is initialized to nil. KEY1l may be either an entity key
or a 1list key. If KEYl is an entity key, then the constituent
list of KEY1l is NOT'ed with KEY2. If KEY1l is a list key, then
KEY1 is KOT'ed with KEY2. KEY2 may be either an entity key or
a list key. If KEY2 i{s an entity key, then the constituent
1list of KEY2 is NOT'ed with KEYl. If KEY2 is a list key, then
KEY2 is NOT'ed with KEYl. The list KEY3 is created,
corresponding to the set theoretical difference of KEYl and
KEY2.

The possible return code values are:

0 = Success
17 = Failure KEYl is not a valid entity key
or list key.

38, 39, 40 = Failure No more core memory.

-6 = Warning There was no difference between
the two lists.

No list is created for failures or warnings.

4-75

FURCTION:

FORMAT:

DESCRIPTION:

CI UM560240031U
July 1989

MALOR

Create a list from a Boolean “OR" on two input lists.

MALOR(KEY1,KEY2,KEY3,IRC)
INPUT:
KEY1 : ANYKEY
An entity or a list that is to be OR'ed.
KEY2 : ANYKEY
An entity or a list that is to be OR'ed.
OUTPUT:
KEY3 : LISTKEY
The list of entities that occurred in either
KEY1l or KEY2.
IRC : INTEGER

The return code.

KEY]1l may be either an entity key or a list key. If KEYl1l is an
entity key, then the constituent list of KEYl is OR‘'ed with
KEY2. 1If KEY1l is a 1list key, then KEYl is OR'ed with KEY2.
KEY2 may be either an entity key or a list key. If KEY2 is an
entity key, then the constituent list of KEY2 is OR'ed with
KEYl. 1If KEY2 is a 1ist key, then KEY2 is OR'ed with KEY1.
The list KEY3 is created, corresponding to the set theoretical .
union of KEYl and KEY2. There will be no duplicates in KEY3.

The possible return code values are:

0 = Success

17 = Failure KEY1 is not a valid entity key
or list key.
18 = Fajlure KEY1 is nil.
38, 39, 40 = Failure No more core memory.
-6 = Warning Neither key has constituents nor

application 1list.

No list is created for failures or warnings.

4-76

Cl UM560240031U

July 1989
4.4.6 Delete Operations - Applicatjon Lists Only
Table 4-13 presents the delete routines:
A 4—
DELETE ROUTIRES

DESCRIPTION ROUTINE
Delete an application list. MALD
Delete all application lists. MALDA
Delete an application list and all lists created MALDI
after it.
Set or unset the application list lock flag. MALOCK

Delete routines are further described on the following pages.

4-77

- CI UM560240031U
i July 1989

MALD
FUNCTION: Delete an application list.
FORMAT: MALD(KEY1,IRC)
INPUT:
KEY1 : LISTKEY
The list to be deleted.
OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: KEY1l must not be an entity key. KEY1l is deleted. KEY1l cannot
be recovered.

The possible return code values are:

0 = Success
29 = Failure KEY1l is not a list key.
38, 39, 40 = Failure No more core memory exists.

4-78

FUNCTION:

FORMAT:

g

DESCRIPTION:

Cl UM560240031U
July 1989

MALDA

Delete all application lists.
MALDA(IRC)

INPUT:
NONE

OUTPUT:
IRC : IRTEGER
The return code.

All application lists will be deleted. They cannot be
recovered, If an application list is locked, then it will not
be deleted.

The possible return code values are:

38, 39, 40 = Fajlure No more core memory exists.

CI UM560240031U

July 1989
MALDI
FUNCTION: Delete an application 1list and all lists created after it.
FORMAT: MALDI(KEY1,IRC)
INPUT:
KEY1 : LISTKEY
The list to be deleted.
OUTPUT:
IRC : INTEGER

The return code.

DESCRIPTION: KEY1 must not be an entity key. The list identified by KEY1
and all lists created after it will be deleted. Deleted lists
cannot be recovered. If an application list is locked, then
it will not be deleted.

The possible return code values are:

17 = Failure KEY]l is not a list or no lists
exist.
38, 39, 40 = Fallure No more core memory exists.
4-80

CI UM560240031U
July 1989

MALOCK
FUNCTION: Set or unset the application list lock flag.
FORMAT: MALOCK(KEY1,LOCK,IRC)
INPUT:
KEY1 : LISTKEY
The list to be set.
LOCK : INTEGER
The lock setting
=0 unlocked
=1 locked
OUTPUT:
IRC : INTEGER

The return code
DESCRIPTION: A list that is locked will not be deleted by the MAS interface
functions MALDA or MALDI. All other functions that delete
lists will delete a locked 1list.

The possible return code values are:

17 = Failure KEYl is not a list.
38, 39, 40 = Failure No more core memory exists,

4-81

CI UM560240031U
July 1989

4.5 Execute Operatjops

Many times in an application program, it is necessary to process each
entity on a list with a user-written subroutine. An example of how each
entity of a pParticular XIND couyld be processed {s shown in the following

.

CALL MALK(KNDVAL,LIST,IRC)
CALL MALSTF(LIST, IRC)
100 CALL MALRD(LIST,ENTITY,IRC)
IF(IRC .NE. 0) GoTO 200
CALL HAEGTK(ENTITY,ADB,IRC)
CALL USRSUB(ENTITY,ADB,USRDAT,URC)
GOTO 100
200 CALL MALD(LIST,IRC)

Similar techniques could pe used for Processing an application list, a
constituent list, or a user list. Note that the return code from the
user-written subroutine may affect whether processing should continue.

The EXECUTE operations, hovever, provide a simpler, more efficient
method. The previous example can be replaced with:

CALL HAKXEQ(KNDVAL,USRDAT,USRSUB,URC,IRC)

4-82

CI UM560240031U
July 1989

An EXECUTE operation, shown in Figure 4-2, is invoked by a user routine
to execute a user-written subroutine for each entity on a list.

User Routine
A
¢ User-Defined Data Area o User-Written Subroutine
o User Subroutine Return Code\\ o User-Defined Data Area
¢ EXECUTE Operation
Return Code
EXECUTE
Operation
e Entity ‘lieDyB
o Ent
* User-Defined Data Area OUsegDeﬁned Data Area
e User Subroutine Return Code
User
Subroutine

Figure 4-2, Exécute Operation

The user-written subroutine is passed as a parameter from the user
_routine to the EXECUTE operation. The method by which this is done in the
multi-language environment supported by MAS is described in Section 3, which
describes both the IBM and VAX operating environments.

The user-written subroutine must use a standard paramet-rr list. The
following example shows the data types for the standard parameter list:

USRSUB(KEY,ADB,USRDAT,URC)

where the data type for

KEY {8 an ENTKEY (input).
ADB is an ENTBLOCK (input/output; note that the KIND, LENGTH, and
SYSUSE fields should not be changed).
USRDAT is user-defined (input/output).
URC is an INTEGER (output).
4-83

Cl UM560240031U
July 1989

The possible return code values from the user-written subroutine affect
the EXECUTE operations as follows:

0 through 7 The EXECUTE operation will continue processing.

¢ 0or>7 The EXECUTE operation will halt processing and return
the URC to the user routine that called the EXECUTE
operation.

There are specific meanings within the above ranges for some of the
EXECUTE operations. These are explained in the routine descriptions,

Table 4-14 shows the EXECUTE routines:
TABLE 4-14
EXECUTE ROUTINES

DESCRIPTION ROUTINE
Execute a procedure on an entity or a list of entities. MAEXEQ
Execute a procedure on all entities of a specified KIND. MAKXEQ
Execute a procedure on an entity or a list of entities. MALXEQ
Execcute a procedure on the constituents of an entity. MAECXQ
Execute a procedure on the users of an entity. MAEUXQ
Execute a sorting procedure on the constituents of an MALSRT

entity or the entities in a 1list.

Routines are described in the following pages.

4-84

FUNCTION:

FORMAT:

DESCRIPTION:

Cl UM560240031U
July 1989

MAEXEQ

Execute a procedure on a entity or a list of entities,
MAEXEQ(KEY1,DATA,PROC,RCC,IRC)

IRPUT:
KEY1 : ANYKEY
The entity or list of entities on which the
application procedure should be performed.

DATA : BLKDATA
The application-defined data structure that
is passed to the application-defined
procedure.

PROC : ROUTINE
Application-defined procedure that processes
one entity at a time.

OUTPUT:

RCC : INTEGER
The procedure PROC return code.

IRC

INTEGER
The MAS return code.

The entity, or each entity on an application list, is passed
to the application-defined procedure. The operation performed
on the entity is determined by the application-defined
procedure. Processing of application lists occurs in the
forvard direction. Unless the default direction has been
changed by previous processing or by a call to MALSTF or
MALSTR. Processing halts when the application-defined

procedure returns RRC » 7 or RRC ¢ 0 after processing an
entity.

The possible return code values are:

0 = Success

17 = Failure KEY] is not a valid entity Kkey
or list key.
18 = Failure KEY1 is nil.
23 = Execution Halted RRC > 7 and RRC ¢ = 15,
24 = Execution Halted RRC » 15 or RRC ¢ 0.
38, 39, 40 = Failure No more core memory exists.
-5 = Warning End of list reached.
4-85

CI UMS560240031U

July 1989
MARXEQ
FUNCTIOR: Execute a procedure on all entities of a specified kind.
FORMAT: MAKXEQ(KIND,DATA,PROC,RCC,IRC)
INPUT:
KIND : INTEGER
. The KIRD value of the entities to be
processed,
DATA : BLKDATA
The application-defined data structure, which
is passed to the application-defined
procedure.
PROC H ROUTINE
Application-defined procedure that processes
one entity at a time.
OUTPUT:
RCC : IRTEGER
The procedure PROC return code.
IRC : INTEGER

The MAS return code.

DESCRIPTION: Each entity of the specified kind is passed to the
application-defined procedure. The order of processing is in
the reverse order for which the entities were created. When
the application-defined procedure returns RRC » 7 or RRC ¢ 0,
processing halts.

The possible return code values are:

0 = Success

23 = Execution Halted RRC > 7 and RRC ¢ = 15.
24 = Execution Halted RRC > 15 or RRC ¢ O.
38, 39, 40 = Failure No more core memory exists.
-1 = Warning Ro such kind exists.
4-86

v ———— .
— e - —— el —

FUNCTION:

FORMAT:

DESCRIPTION:

CI UMS560240031U
July 1989

MALXEQ

Execute a procedure on a entity or a list of entities.
Construct an output list of entities as determined by the
application procedure.

MALXEQ(KEY1,DATA,PROC,KEY2,RCC, IRC)

INPUT:
KEY1 : ANYKEY
The entity or list of entities to be
processed,
DATA + BLKDATA
The application-defined data structure, which
is pasgsed to the application-defined
procedure.
PROC : ROUTINE
Application~defined procedure that processes
one entity at a time.
OUTPUT:
KEY2 : LISTKEY
The list created by this function.
RCC : INTEGER
The procedure PROC return code.
IRC : INTEGER

The return code produced by this operation.

An empty list (KEY2) is created. The entity, or each entity
in sequence if a list is supplied, is passed to the
application- defined procedure. The operation performed on
the entity is determined by the application-defined

procedure. When the application-defined procedure return code
is "success,” (RCC = 0 or 1), the entity just processed is
added to the result list. Wwhen an application-defined
procedure returns code is "failure®, (<0 or >» 7), MALXEQ is
terminated. When an application-defined procedure return code
is "warning® (2 through 7), the entity just processed is not
placed on the result list, but processing continues.

The processing of application lists occurs in the forward

direction unless the default direction has been changed by
previous processing or by a call to MALSTF or MALSTR.

4-87

Cl UMS560240031U

July 1989
The possible return code values are:

0 = Success

17 = Failure KEY1l is not a valid entity key
or 1list key.

18 = Failure KEY1l is nil.

23 = Execution Halted RRC » 7 and RRC ¢ = 15.

24 = Execution Halted RRC » 15 or RRC ¢ 0.

32 = Failure Cannot read constituent list.

33 = Fajlure Cannot read constituent list.

38, 39, 40 = Failure No more core memory exists.

-2 = Warning An entity processed with RRC > 1
and RRC ¢ = 7.

-6 = Warning No entities processed with RRC =
0 or RRC = 1.

FUNCTION:

FORMAT:

DESCRIPTION:

CI UM560240031U
July 1989

MAECXQ

Given an application-defined procedure, perform this procedure
on the constituents of an entity or list of entities.

MAECXQ(KEY1,DATAREC, PROCNM,KEY2 ,RRC, IRC)

INPUT:
KEY1 : ANYKEY
Key of an entity or an application list that
is constituent(s) are to be processed.
DATAREC : BLKDATA

The application-defined data structure that
is passed to the application-defined
procedure.

PROCNM : ROUTINE
Application-defined procedure that processes
one entity at a time.

OUTPUT:

KEY2 : LISTKEY
Key to the list of constituents that
processed with RRC = 0, 1; routine will
append to KEY2 if a valid list key.

RRC : INTEGER
Return code of the application-defined
procedure.

IRC : INTEGER

Return code

Each constituent of an entity is processed by the application-
defined procedure. Each constituent processed with RRC = 0 or
1l is added to KEY2. For an application list, entities are
processed in the direction set by previous processing or by a
call to MALSTF or MALSTR; the constituents of these entities
are processed in the forward direction only. (Each
constituent processed with RRC = 0 or 1 is added to KEY2.)
Processing halts when the application-defined procedure
returns RRC > 7 or RRC ¢« 0 after processing a constituent.

4-89

The possible return code values are:

38, 39,

0
17

18
23
24
32
33
40
~2

~6

Success
Failure

Failure
= Execution Halted
= Execution Halted
Fajlure
= Fallure
= Failure
= Warning

L]

= Warning

Cl UMS560240031U
July 1989

KEY1l is not a valid entity key
or 1list key.

KEY1l is nil.

RRC > 7 and RRC ¢ = 15.

BRRC » 15 or RRC ¢ O.

Cannot read constituent 1ist.
Cannot read constituent list.
No more core memory exists.
An entity processed with RRC 3 1
and BRRC ¢ = 7,

Ro entities processed with
BRC = 0 or RRC = 1.

FUNCTION:

FORMAT:

DESCRIPTION:

CI UM560240031U
July 1989

MAEUXQ

Given an application-defined procedure, perform this procedure
on the users of an entity or list of entities.

MAEUXQ(KEY1,DATAREC, PROCNM,KEY2 ,RRC, IRC)

INPUT:
KEY1 : ANYKEY
Key of an entity or an application list that
is user(s) are to be processed.

DATAREC : BLKDATA
The application-defined data structure that
passed to the application-defined procedure.
PROCNM : ROUTIRE
Application-defined procedure that processes
one entity at a time.
OUTPUT:
KEY2 : LISTKEY
Key to the list of users that processed with
RRC = 0, 1; routine will append if given a
valid list key.
RCC : INTEGER
Return code of the application-defined
procedure.
IRC : IRTEGER

Return code

Each user of an entity is processed by the application-defined
procedure. Each user processed with RRC = 0 or 1 is added to
KEY2. For an application list, entities are processed in the
direction set up by previous processing or by a call to MALSTF
or MALSTR; the users of these entities are processed in the
forward direction only. (Each user processed with RRC = 0 or
1 is added to KEY2. Processing halts when the

application-defined procedure returns RRC » 7 or RRC ¢ 0 after
processing a user. :

4-91

The possible return code values are:

0 = Success

17

18
23
24
32
33
38, 39, 40
-2

-6

Failure

Failure
Execution Halted
Execution Halted
Failure
Fallure
Failure
Warning

VWarning

CI UM560240031U
July 1989

KEY1 is not a valid entity key
or list key.

KEY1l is nil.

RRC » 7 and RRC ¢ = 15.

RRC > 15 or RRC ¢ O.

Cannot ‘read constituent list.
Cannot read constituent list.
No more core memory exists.

An entity processed with RRC 31
and RRC ¢ = 7.

No entities processed with RRC =
0 or RRC = 1,

4-92

FUNCTION:

FORMAT:

DESCRIPTION:

CI UM560240031U
July 1989

MALSRT
Sort the constituents of an entity or the entities in an
application list according to an application-defined algorithm.
MALSRT(KEY,PROCNAME ,RRC)

INPUT:
KEY : ANYKEY
The key to an entity or list of entities.

PROCNAME

ROUTINE

ROUTINE(CURRENT : ENTBLOCK;
NEXT :ENTBLOCK;
FLIP :BOOLEAN;
RR :IRC);

Application-supplied routine with the above
parameter list that determines the relative
value of two entities in the input list.

OUTPUT:
RRC : INTEGER
The return code.

Given an entity or list of entities using a combination of
bubblesort and quicksort, MALSRT sends a user-defined routine
two entity ADBs. The routine returns a Boolean value
indicating true if the first ADB is greater than the second or
the second is less than or equal to the first entity.

The possible return code values are:

0 = Success
17 = Failure KEY1l is not a valid entity key
or list key.
18 = Failure KEY1l is nil.
23 = Failure RR <> 0.
38, 39, 40 = Failure No more core memory exists.

4-93

4.6

C1 UM560240031U
July 1989

Genera urpose Ut e

This section contains descriptions of general purpose utility routines,
as shown in Table 4-15, and the following pages.

ABLE 4-

GENERAL PURPOSE UTILITIES

DESCRIPTION

ROUTIRE

Get number of different KIND values in the working-form
model.

MAECTK

Get KIND value stored at specific position in KIRD list.

MAEKND

Get actual model space used and amount of model free
space.

MASMSZ

Determine the number of entities in the model of a
specified KIND.

MAKRCNT

4-94

CI UM6560240031U

July 1989
MAECTK
FUNCTION: Get the number of different KIND values in the working-form
model.

FORMAT: MAECTK(KNDCNT,IRC)

INPUT:

NONE
OUTPUT:

KNDCNT : INTEGER
The number of different KIND values in the
working-form model.

IRC INTEGER

The return code.

DESCRIPTION: Get the number of KIND values in the working-form model from
the KIND 1list.

NOTE: Works in conjunction with MAEKND.

The possible return code values are:

0 = Success
30 = Failure No model established.
38, 39, 40 = Failure No more cove memory; had no

constituents.

| 4-95

CI UM560240031U

July 1989
MAEKND
FUNCTION: Get KIND value at specified position in the KIND 1list.
FORMAT: MAEKND (KNDPOS ,KNDVAL,IRC)
INPUT:
KNDPOS : INTEGER
The position in the standard array of where
to get the KIND value.
OUTPUT:
KNDVAL : INTEGER
The KIND value retrieved from the KIND list,
IRC : IRTEGER

The return code.
DESCRIPTION: Get the KIND value at KNDPOS in the KIND list.
NOTE: Works in conjunction with MAECIK.
The possible return code values are:

0 = Success

30 = Failure No model established.
31 = Failure Corrupted model.
38, 39, 40 = Failure No more core memory exists.
4-96

CI UM560240031U

July 1989
MASMSZ
FUNCTION: Determine actual model used space and model free space (in
bytes).
FORMAT: MASMSZ(MODSIZ,FRESIZ,IRC)
OUTPUT:
MODSIZ : INRTEGER
The total number of dbytes used by the model.
FRESIZ : INTEGER
The total number of bytes of free space.
IRC : INTEGER

The return code.
DESCRIPTION: The used model space is calculated by taking the difference of
allocated model space and free model space. This routine can

only be used where the MAS memory manager is used.

The possible return code values are:

0 = Success

4-97

CI UM560240031U

July 1989
MAKCNT
FUNCTION: Determine the number of entities in the model of a specified
KIND.
FORMAT: MAKCNT(KIND,COUNT, IRC)
INPUT:
KIND : INTEGER
The KIND value for which a count is to be
determined.
OUTPUT:
COUNT INTEGER
The number of entities in the model of the
specified KIND.
IRC : IRTEGER

The return code.

DESCRIPTION: 1If the KIND specified is in the model, determine the number of
entities with that KIND.

The possible return code values are:

0 = Success

4-98

4.7 Specjal Purpose Utilities

CI UMS560240031U
July 1989

This section contains descriptions of special purpose utilities, as

shown in Table 4-16, and the following pages.

TABLE 4-16

SPECIAL PURPOSE UTILITIES

DESCRIPTION ROUTINE
Delete an entity or list of entities but do not consider MIDBD
delete rules.

Remove an entity from the constituent list and delete if MIDBRV
marked.

Retrieve the run-time subschema for a given entity kind. MARSGT
Create a run-time subschema for a given entity kind. MRSCR
Delete the run-time gubschema for a given entity kind. MARDLT

4-99

CI UM560240031U

July 1989
MIDED
FUNCTION: Delete an entity or list of entities but do not consider the
delete rules.
FORMAT: MIDBD(KEY1l,RC)
INPUT:
KEY1 : ANYKEY
An entity or list of entities that are to be
deleted,
OUTPUT:
RC : INTEGER

The return code.

DESCRIPTION: If KEYl is an entity, delete the entity. If KEY1l is a list,
then eliminate duplicate entries and delete each entity on the
list.

The possible return code values are:

0
26
29

32
33
38, 39, 40
-6

-11

Success
Failure
Failure

Fallure
Failure
Failure
Warning

= Warning

4-100

Duplicates not removed.

KEY1l is nil or not an entity key
or a key to an application 1list.
Cannot read constituent list.
Cannot read constituent list.

No more core memory.

The entity or list of entities
had no constituents.

KEY1l had no entities to delete.

FUNCTION:

FORMAT:

DESCRIPTION:

Cl UMS560240031U
July 1989

MIDBRV

Remove an entity from the constituent list or remove an entity
from a list of entities and delete if marked for delete.

MIDBRV(KEY1,1POS,RC)
INPUT:
KEY1 : ANYKEY

An entity or list of entities from which an
entity will be removed.

IPOS :
The position of the key that will be removed.
OUTPUT:
RC : INTEGER

The return code.

If KEY1l is an entity, select the entity at the input position
from the constituent list of KEYl. Remove all occurrences of
it from the user list of all its users. Remove all
occurrences of it from the constituent list of KEYl. If the
entity is marked for delete, attempt to delete it.

If KEY)] i3 a list, delete it from the position indicated. 1If
there was only one member in the list, the list is deleted.

The possible return code values are:

38, 39,

0 = Success

17 = Fallure KEY1 is neither an entity or
list key.

18 = Fallure KEY1l is nil

32 = Failure Cannot read constituent list.
List key.

33 = Failure Cannot read constituent list.
List key.

42 = Failure Delete rules defined incorrectly.

40 = Failure No more core memory exists.

4-101

CI UM560240031U

July 1989
MARSGT
FUNCTION: To retrieve the run-time subschema for a given entity kind.
FORMAT: MARSGT(KIND,SCHPTR,RC)
INPUT:
KIRD : ORD_KIND

The kind of the entity wvhose run-time
subschema is to be retrieved.

SCHPIR : T_SCHEMA_POIRTER
Pointer to the run-time subschema.

OUTPUT:
RC : INTEGER
The return code.

DESCRIPTION: Given a valid entity kind, a run-time subschema is located in
the working form.

The possible return code values are:

37 = Fallure A run-time subschema has not
been established for this entity
kind.

38, 39, 40 = Failure No more core memory exists.

-1 = Warning No such kind exists.

4-102

Cl UM560240031U

July 1989
MRSCR
" FUNCTION: Create a run-time subschema for a given entity kind.
FORMAT: MRSCR(KIND,SCH_SIZE,RTSS,RC)
INPUT:
KIND ORD_XIND
The kind of the entity whose run-time
subschema is to be added.
SCH_SIZE : IRTEGER
The gize of the schema to be created.
RTSS : T_SCHEMA_POINTER
The pointer to the area containing the
Tun-time subschema.
OUTPUT:
RC H INTEGER

The return code.

DESCRIPTION: Given a valid entity kind, a run-time subschema is added to
the working form.

The possible return code values are:

19 = Failure A run-time subschema has already
been established for this entity
kind.

38, 39, 40 = Failure Ro more core memory exists.

-1 = Warning No such kind exists.

No subschema is created for all failures or warnings.

4-103

-

Cl UM560240031U

July 1989
MARDLT
FUNCTION: To delete the run-time subschema for a given entity kind.
FORMAT: MARDLT(KIND,RC)
IRPUT:

KIND : ORD_KIND
The kind of the entity whose run-time
subschema is to be deleted.

OUTPUT:
RC : INTEGER
The return code.

DESCRIPTION: Given a valid entity kind, a run-time subschema is deleted
from the working form.

The possible return code values are:

37 = Failure A run-time subschema has not
) been established for this entity
kind.
38, 39, 40 = Fallure No more core memory exists.
-1 = Warning No such kind exists.
4-104

CI UM560240031U
July 1989

4.8]IBM/MVS Environment
4.8.1 Compiling Considerations

The MAS may be used by any application with the appropriate constants,
types, and interface routine declarations. For PASCAL programs, these are
defined in the following INCLD file.

DSNAME = CADS.GMAP.V33.MASINC

Member = APLTYP

INCLUDE File

The types and constants used for the Model Access Software which are
contained in the INCLUDE file member APLTYP are listed below:

CONST
NULL_KEY = 0;
TYPE
ANYKEY = INTEGER;
EXT_RET_CODE = INTEGER;
LISTINDX = INTEGER;
LISTPSTN = INTEGER;
LISTSIZE = INTEGER;
RAMTYP = PACKED ARRAY(.l..6.) OF CHAR;
ORD_KIND = INTEGER;
ROUTINE = ARRAY(.l..8.) OF CHAR;
(* *)
ENTKEY = ANYKEY;
LISTREY = ANYKEY;

The IRCLUDE file also contains the formal declarations for the interface
routines. The member names in the INCLUDE file are the same as the
interface routine names.

4.8.2 Considerations When Using The XEO Routines (MAEXEQ, MALXEQ, MAKXEQ,
MAECXO0, MAEUXO, MALSRT)

If an EXECUTE routine is used, then the conventions presented in Figure
4-2 apply.

The user-written subroutine is passed as a parameter from the user

routine to the EXECUTE operation. The method by which this is done in the
multi-language environment supported by MAS is described below.

4-105

———

Cl UMS560240031U
July 1989

The name of the user subroutine is defined to the user routine ir PASCAL:
REF USRSUB : ROUTINE;

and in FORTRAN:
COMMON/USRSUB/USRSUB/

This allows the procedure to be passed as a parameter in a manner that
is independent of the requirements of a particular language compiler. The
EXECUTE operations correctly resolve this nonstandard linkage convention. A
PASCAL user routine should have knowledge of the user subroutine only as a
REF and not as a PROCEDURE. A PASCAL user subroutine must be declared as a
SUBPROGRAM. The BLKDATA type must appear before the INCLUDE command for the
formal declaration for the EXECUTIE routine.

4.8.3 Linking Considerations

The MAS consists of PASCAL procedures declared as SUBPROGRAMS that have
been processed by the linkage editor into a single module. The references
to the PASCAL run-time support are unresolved. The module may be
incorporated into an application program by the appropriate data definition
statement and linkage editor control statements containing the following:

ddname = MASLIB

disp = SHR

dsname = CAD2.GMAP.V33.LOAD

IKCLUDE MASLIB(MAS)

The TEST library has PASCAL CHECKING enabled and contains aids for error

diagnosis. The PROD library has PASCAL NOCHECK and contains minimal error
diagnosis. We recommend using the TEST version during software development.

4.9 VAX/VMS Environment
4.9.1 Compiling Considerations

The MAS may be used by application with the appropriate constants,
types, and interface routine declarations. For PASCAL programs, these are
defined in the following INC file:

directory = [GMAP.V33.MASINC]

file name = APLTYP.INC

4-106

Cl UM560240031U
July 1989

NCLUD! le

The types and constants used for the Model Access Software vhich are
contained in the INCLUDE file APLTYP are listed below:

CONST
NULL_KEY = 0;
TYPE
ANYKEY = INTEGER;
EXT_RET_CODE = INTEGER;
LISTINDX = INTEGER;
LISTPSTN = INTEGER;
LISTSIZE = INTEGER;
NAMTYP = PACKED ARRAY(.1..6.) OF CHAR;
ORD_KIND = INTEGER;
ROUTINE = ARRAY(.1..8.) OF CHAR;
(* *)
ENTKEY = ANYKEY;
LISTKEY = ANYKEY;

The INC files also contain the formal declarations for the interface
routines. The file names for the INC files are the same as the interface
routine names.

4.9.2 Consideratjons When Using The XEQ Routines (MAEXEQ, MALXEQ, MAKXEQ,
MAECXQ, MAEUXQ, MALSRT)

If an EXECUTE routine is used, then the conventions presented in Figure
4-2 apply.

The user-written subroutine is passed as a parameter from the user
routine to the EXECUTE operation. The method by which this is done in the
multi-language environment supported by MAS is described below.

The name of the user gubroutine is defined to the user routine in PASCAL:

VAR USRSUB : [EXTERNAL]ROUTINE;
and in FORTRAN:
COMMON/USRSUB/USRSUB/

This allows the procedure to be passed as a parameter in a manner that
is independent of the requirements of a particular language compiler. The
EXECUTE operations correctly resolve this nonstandard linkage convention. A
PASCAL user routine should have knowledge of the user subroutine only as an

EXTERNAL VAR and not as a PROCEDURE. The BLKDATA type must appear before
the INCLUDE for the format declaration of the EXECUTE routine.

4-107

Cl UM560240031U
July 1989

4.9.3 Linking Considerations

The MAS consists of PASCAL procedures that have been compiled and
inserted into an OLB/library. They may be incorporated into an application
program by the appropriate data definition statement and linker control
statement as follows:

(GMAP.V33.MASOLB]MAS30BJ.OLB/Library

4-108

e — - ——

CI UM560240031U
July 1989

SECTION 5

NAME/VALUE INTERFACE

5.1 Overview

The RVI frees applications programmers from concern for the physical
location of attributes for entities in the working form of the MAS.
Applications programmers need only the attribute name and data type from the
physical schema definition to obtain the attribute value. The benefits of
the NVI include the ability to alter the physical data structure without
impacting program source code, the removal of the need to program and
maintain attribute data structures and access algorithms by the applications
programmers, and the concentration of efficiency concerns at the system
level.

The following capabilities are provided to achieve the above benefits
for various commonly used high-order application languages, application
environments, and host processors.

DIRECT QUERY/STORE SUBPROGRAMS, to be called by applications programs
that use an attribute value for a specified entity (including an
attribute for a constituent entity);

PROCEDURAL QUERY SUBPROGRAMS, to be called by applications programs that
require a list of entities that have a specified attribute value
(including an attribute for a constituent entity);

The Direct Query/Store and Procedural Query subprograms require
translation of an attribute name into a location within the ADB, according
to the physical schema definition for a particular entity KIND. A run-time
subschema entry is created for those entity KINDs that are present in the
vorking form when they are referred to by a call to the RVI. The run-time
subschema defines the mapping of an attribute name to the physical location
of the attribute value.

5.2 Direct Query/Store
5.2.1 Functjon

The Direct Query function of the RVI obtains an attribute value from the
MAS working form (including an attribute of a constituent entity) for a
specified entity key and attribute name. The Direct Store function replaces
an attribute value in the MAS working form (including an attribute of a

constituent entity) for a specified entity key and attribute name. Binding
to the schema is performed at run time.

5-1

CI UM560240031U
July 1989

The current implementation provides for attribure data types of integer,
real, string, logical, enumeration, pointer, and array.

The definition of the attribute is obtained from the schema at run time.
The current implementation uses either the GMAP Data Dictionary or the
Run-Time Subschema binary files produced by the GMAP Schema Manager software
as the source of schema information. The scope of the NVI is limited to the
attributes of entities that are defined in the copy of the schema definition
used by the application for processing. It i{s assumed that the entity
instance corresponds to the schema definition for the entity. The default
GMAP Data Dictionary includes 221 GMAP entities. It may be supplemented by
using the GMAP Schema Manager software to add entity definitions.

The RVI functions are designed for use by programs of any of the commonly
used high-order languages (for example, the environment used for testing the
NVI subprograms is a mixture of FORTRAN and PASCAL). One of the implications
of this approach is that the application program that calls a RVI function
must provide a data area for the attribute value that is compatible with the
schema definition of the attribute (for example, the size of the data area
when dealing with string data types).

The attribute name used in a call to a NVI function is an array of
characters. The name is terminated by a null (a byte containing a hexadecimal
“00"). When the name refers to an attribute in a constituent entity, it
consists of a segment containing the name of the attribute specifying the
constituency (i.e., pointer type), followed by a segment containing the name
of the attribute in the constituent. The name segments are separated by a
period. There may be multiple gegments for specifying compound constituency.
Only the last segment is terminated by a null. Trailing blanks within a)
segment may be omitted.

When referring to an element within an array, or to a subarray, the name
of the attribute specifying the array is followed by open and close
parentheses. The subscript value itself is placed in the numeric array
associated with the name of the attribute. When the array is
multidimensional, commas are inserted inside the parentheses. For an
n-dimension array, there will be n-1 commas to specify a single element. The
commas indicate the additional subscript values in the numeric array required
to identify the element or the subarray. When referring to the entire array,
there are no parentheses or commas.

5-2

- = we— e

CI UM560240031U
July 1989

5.2.2 Direct Query Format

NVDQAR (Entity_Key, Name_String, Subscript_Values, Attribute_Value,
Return_Code)

where the data type for:
Entity_Key is an ENTKEY (input).

Name_String is a T_ATTRIBUTE_NAME; the number of characters used
depends on the attribute name (input).

Subscript_Values 1is a T_DIMEN_VALUE; the number of entries used depends

on the number of dimensions specified (input).
Attridbute_Value is a T_ATTRIBUTE_VALUE (output).
Return_Code is an EXT_RET _CODE (output).
The possible return code values are:
0 = Success.

1

Failure: the entity KIND is not defined in the run-time subschema.

2

Fallure: the attribute name is not defined for the entity in the

run-time gubschema.

3 = Failure: the entity key is nil (the KIND cannot be determined).

-1 = Warning: an invalid entry in the GMAP Data Dictionary was detected
during the translation of an attribute; the warning message
written to ddname = OUTPUT describes the error in detail.

An attribute value is obtained for the return codes for success (0) and

warning (-1); no attribute value is obtained for the return codes of failure
(1, 2, or 3).

5-3

CI UM560240031U
July 1989

5.2.3 Direct Store Format

NVDSAV (Entity_Key, Name_String, Subscript_Values, Attribute_Value,
Return_Code)

where the data type for:
Entity_Key is an ENTKEY (input).

Name_String is a T_ATTRIBUTE_NAME; the number of characters used
depends on the attribute name (input).

Subscript_Values is a T_DIMEN_VALUE; the number of entries used depends
on the number of dimensions specified (input).

Attribute_Value is a T_ATTRIBUTE_VALUE (input).
Return_Code is an EXT_RET_CODE (output).

The possible return code values are:

0 = Success.
1l = Failure: the entity KIND is not defined in the run-time subschema.
2 = Failure: the attribute name is not defined for the entity in the

run-time subschema.

3 = Fallure: the entity key is nil (the KIND cannot be determined).

-1

Warning: an invalid entry in the GMAP Data Dictionary was detected
during the translation of an attribute; the warning message
written to ddname = OUTPUT describes the error in detail.

An attribute value 1s replaced in the return codes for success (0) and

varning (~1); the attribute value is not replaced for the return codes for
failure (1, 2, or 3).

5.3 Procedural Query
5.3.1 Function
The Procedural Query function of the NVI evaluates an input application

list of entities and creates an output application list of entities. The
output is determined by a selection criterfon based on an attribute of the

5-4

e el v At e o = ™=

e

Cl UMb560240031U
July 1989

entities in the MAS working form (including an attribute of a constituent
entity). Entities are selected based on the specified relation to the
specified value for the specified attribute name. Binding to the schema is
performed at run time.

The current implementation will evaluate attribute data types of integer,
real, string, logical, enumeration, pointer, and array.

The definition of the attribute is obrained from the schema at run time.
The current implementation uses a file in the format of the GMAP Data
Dictionary or the Run-Time Subschema binary files produced by the GMAP Schema
Manager software as the source of schema information. The scope of the NVI is
limited to the attributes of entities that are defined in the copy of the
schema definitions used by the application for processing. It is assumed that
the entity instance corresponds to the schema definition for the entity. The
default GMAP Data Dictionary includes 221 GMAP entities. It may be

supplemented by using the GMAP Schema Manager software to add entity
definitions.

The NVI functions are designed for use by programs of any of the commonly’
used high order languages (for example, the environment used for testing the
NVI subprograms is a mixture of FORTRAN and PASCAL). One of the implications
of this approach is that the application program that calls a KRVI function
must specify an attribute value that is compatible with the schema definition

of the attribute (for example, the size of the data area when dealing with
string data types).

The attribute name used in a call to a NVI function i{s an array of
characters. The name 18 terminated by a null (a byte containing a hexadecimal
“00"). When the name refers to an attribute in a constituent entity, it
consists of a segment containing the name of the attribute specifying the
constituency (i.e., pointer type), followed by a segment containing the name
of the attribute in the constituent. The name segments are separated by a
period. There may be multiple segments for specifying compound constituency.
Only the last segment is terminated by a null. Trailing blanks within a
segment may be omitted,

When referring to an element within an array, or to a subarray, the name
of the attribute specifying the array is followed by open and close
parentheses. The subscript value itself is placed in the numeric array
associated with the name of the attribute. When tke array is
multidimensional, commas are inserted inside the parentheses. For an
n-dimension array there will be n-1 commas to specify a single element. The
commas indicate the additional subscript values in the numeric array required

to identify the element or the subarrsy. Wwhen referring to the entire array,
there are no parentheses or commas.

5-5

CI UM560240031U
July 1989

5.3.2 Format

NVPQAV (Candidate_List, Name_String, Attribute_Value, Subscript_Values,
Comparison_Operator, Selected_List, Return_Code)

where the data type for:

Candidate_List is a LISTKEY (input).

Name_String is a T_ATTRIBUTE_NAME; the number of characters used
depends on the attribute name (input).

Attribute_Value is a T_ATTRIBUTE_VALUE (input).

Subscript_Values is a T_DIMEN_VALUE; the number of entries used

depends on the number of dimensions specified (input).
Comparison_Operator is an INTEGER (input). The possible values are:
1 = Attribute value equal

Attribute value less than

[
"

w
n

Attribute value greater than

E-3
(]

Attribute value not equal

S

Attribute value less than or equal

6

Attribute value greater than or equal
Selected_List is a LISTKEY (output).

Return_Code is an EXT_RET CODE (output).

The possible return code values are:

0 = Success.

1 = Fajlure: the entity KIND is not defined in the run-time subschema.

2 = Failure: the attribute name is not defined for the entity in the
run-time subschema.

5-6

Cl UM560240031U
July 1989

Failure: the call to MAS routine MAEXEQ falled.

»
L]

Failure: the call to MAS routine MAL failed.

w
[]

-1 = Warning: an invalid entry in the GMAP Data Dictionary was detected
during the translation of an attribute; the warning message
written to ddname = QUTPUT describes the error in detail.

A valid list of entity instances is obtained for the return codes for
success (0) and wvarning (-1); no valid list of entity instances is obtained
for the return codes of failure (1, 2, 4, or 5).

5.4 Utilitles
5.4.1 Function

The utility routines allow an application program to query the entity
definitions at run-time. This is not normally necessary, but might be done
during development testing, or if entity definitions are frequently changed,
as a part of the one-time initialization for the application.

The first utility routine, NVGTAT, obtains the data type for a specified
attribute. The attribute is identified by its name and the KIND number of the
entity. If the attribute data type is INTEGER, REAL, or STRING, the size for
the data type is also returned. If the attribute data type is POINTER, the
constituent list position is also returned. The attribute name is an array of
characters terminated by a null (a byte containing a hexadecimal "00").
Trailing blanks may be omitted.

The second utility routine, NVGTED, obtains (only from the Data Dictionary
form of the entity definitions) the size of an entity's Application Data Block
(ADB) end the length of its Constituent List (CL). The entity is identified

by its name. The entity name i3 an array of characters terminated by a null
(a byte containing a hexadecimal "00"). Trailing blanks may be omitted.

5.4.2 Attribute Data Tvype Query Format
NVGTAT (Entity_Kind, Attribute_Name, Data_Type, Size, Return_Code)

vhere the data type for:

Entity_Kind is an INTEGER; the KIND number of the entity
containing the attribute definition to be queried
(input).

Attribute_Name is a T_ATTRIBUTE_NAME; the number of characters used

depends on the attribute name (input).

5-7

CI UM560240031U

July 1989
Data_Type is a T_DATA_TYPE; an enumerated scalar indicating the
attribute data type (output).
Size is an INTEGER; the size for INTEGER, REAL, or STRING

data types; the constituent list position for the
POINTER data type; no meaning for ARRAY, LIST, SET,
LOGICAL, or ENUMERATION data types (output).

Return_Code is an INTEGER (output).

The possible return code values are:

0 = Success

1 = Failure: the entity KIND is not defined in the run-time subschema

2 = Failure: the attribute name is not defined for the entity in the
run-time subschema

The attribute Data_Type and Size are obtained for the return code of
success (0); neither is obtained for the return codes of fallure (1 or 2).

5.4.3 [Entity Size Query Format
NVGTED (Entity_Name, Entity_Kind, ADB_Size, CL_Length, Return_Code)
where the data type for:

Entity_Name is a T_ATTRIBUTE_NAME; the number of characters used depends
on the entity name (input).

Entity_Kind is an ORD_KIND (output).

ADB_Size is an INTEGER (output).

CL_Length is an INTEGER (output).

Return_Code is an EXT_RET_CODE (output).

The possible return code values are:

0 = Success

1l = Failure: the entity name is not defined in the run-time subschema

The Entity Kind, ADB_Size, and CL_Length are obtained for the return code
of success (0); none of them are obtained for the return code of failure (1).

58

CI UM560240031U
July 1989

5.5 IBM/MVS Environment

5.5.1 Compiling Considerations
The NVI may be used by an application program with the appropriate

constants and types. For PASCAL programs, these are defined in the following
INCLUDE files:

dsname = CADS5.GMAP,V33.NVIIKC

member = APPLTYP

dsname = CAD5.GMAP.MASINC

member = APLTYP
5.5.2 Include Files

The types and constants used for the RVI which are contained in the RVI
incl:ie file member APPLTYP or the MAS include file member APLTYP are
summarized below:

Const
END_OF_STRING = /00'XC;
MAX_ATTRIBUTE_RAME = 1000;
MAX_DIMENSIONS = 100;
MAX_ENUMERATION = 16;
MAX_FIXED_STRING = 132;
MAX_VARIANT _VALUE = 1000;
Type
ARYKEY = INTEGER;
EXT_RET_CODE = INTEGER;
. ORD_KIND = INTEGER;
T_ATTRIBUTE_NRAME = ARRAY(. 1..MAX_ATTRIBUTE_NAME .) OF CHAR;
T_DATA_TYPE = (INTEGER_DT, REAL_DT, STRING_DT, LOGICAL_DT,

ENUM_DT, PNTR_DT, ARRAY_DT);
ARRAY(. 1..MAX_DIMENSIONS .) OF INTEGER;
PACKED ARRAY(. 1..MAX_ENUMERATION .) OF CHAR;
PACKED ARRAY(. 1..MAX_FIXED_STRING .) OF CHAR;
PACKED -128..127;
PACKED -32768..32767;
ARRAY(. 1..MAX_VARIANT_VALUE .) OF CHAR;

T_DIMEN_VALUE
T_ENUMERATION
T_FIXED_STRING
T_INTEGER_1
T_INTEGER_2
T_VARIANT_VALUE

5-9

CI UM560240031U
July 1989

(* *)
ENTKEY = ANYKEY;
LISTKEY = ANYKEY;
(* *)
T_ATTRIBUTE_VALUE = RECORD
CASE INTEGER OF

0 : (AS_VARIANT : T_variant_value);
1 : (AS_INTEGER_1 : T_Integer_1l);
2 : (AS_INTEGER_2 : T_Integer_2);
3 : (AS_INTEGER_4 : Integer);
4 : (AS_REAL_4 :+ SHORTREAL);
S : (AS_REAL_8 : REAL);
6 : (AS_FIXED_STRING : T_FIXED_STIRING);
7 ¢ (AS_LOGICAL ¢ BOOLEAN);
8 : (AS_ENUMERATIOR : T_ENUMERATION);
9 : (AS_ENRTIKEY : ENIKEY):
END

The RVI INCLUDE file also contains the formal declarations for the
interface routines. The member names in the INCLUDE file are the same as the
interface routine names.

5.5.3 Linkage Consideratjons

The RVI consists of subprograms that have been processed by the linkage
editor into a single module. The subprograms may be incorporated into an
application program by the appropriate data definition statement and linkage
editor control statement containing the following:

ddname = NVILIB
disp = SHR
dsname = CAD2.GMAP.V33.LOAD

ddname = MASLIB
disp SHR
dsname = CAD2.GMAP.V33.LOAD

INCLUDE RVILIB(NVI)
IRCLUDE MASLIB(MAS)

5.5.4 Processing Considerations

The NVI will sutomatically retrieve run-time subschema definitions from
one of two possible sources: the GMAP Data Dictionary files, or the run-time
Subschema binary files. The source to be used will be determined at the time
the KVILIB was installed.

5-10

CI UMS560240031U
July 1989

The files for the Data Dictionary are specified by:
ddname = DDINX

disp = SHR

dsname = CADS.GMAP.V33.DDINDX.DATA

ddname = DDFILE

disp = SHR

dsname = CAD5.GMAP.V33.DDDEFN.DATA

The files for the Run-Time Subschema are specified by:

ddname = INXFILE
SHR
CADS .GMAP.V33.RTSI

disp =
dsname =

ddname
disp
dsname

DATAFILE
SHR
CADS5 .GMAP.V33.RTSD

If any messages occur during the translation from the GMAP Data Dictionary
format and conventions to the run-time subschema format and conventions, they

are written to:

ddname = OUTPUT
lrecl = 133

recfm =

A

The active portion of the run-time subschema is stored in the working form
and, therefore, consumes memory. The amount for each entity KIND is:

48 bytes, plus

28 bytes
8 bytes

16 bytes
8 bytes

8 bytes

8 bytes

plus

4 bytes

» % % % % »

®

the
the
the
the
the
the

the

number
number
aumber
nunber
number
number

number

of attributes for the entity, plus

of attributes of enumeration data type, plus

of possible enumeration values, plus

of attributes of array data type, plus

of array dimensions, plus

of attributes of constituent reference data type,

of possible kinds for the constituent references.

The working form contains entries only for the KINDs of the entity
instances that are specified in calls to the NVI.

5-11

C1 UM560240031U
July 1989

5.6 VAX/VMS Environment

5.6.1 Compiling Consjderations

The NVI may be used by an application program with the appropriate
constants and types. For PASCAL programs, these are defined in the following
INC files:

directory

[GMAP.V33.MASINC]
file name = APLTYP
directory = [GMAP.V33.NVIINC]
file name = APPLTYP

5.6.2]Include Files

The types and constants used for the NVI which are contained in the NVI
include file APPLTYP or the MAS include file APLTYP ARE SUMMARIZED BELOW:

Const
MAX_ATTRIBUTE_NAME = 1000;
MAX_DIMENSIONS = 100;
MAX_ENUMERATION = 16;
MAX_FIXED_STRIRG = 1323
MAX_VARIANT_VALUE = 1000;
Type
ARYKEY = INTEGER;
EXT_RET_CODE = INTEGER;
ORD_KIND = INTEGER;
T_ATTRIBUTE_RAME = ARRAY(. 1..MAX_ATTRIBUTE_NAME .) OF CHAR;
T_DATA_TYPE = (INTEGER_DT, REAL_DT, STRING_DT, LOGICAL_DT,

ENUM_DT, PNTR_DT, ARRAY_DT);
ARRAY(. 1..MAX_DIMENSIONS .) OF INTEGER;

T_DIMER_VALUE

T_ERUMERATIOR = PACKED ARRAY(. 1..MAX ENUMERATION .) OF CHAR;
T_FIXED_STRING = PACKED ARRAY(. 1..MAX_FIXED_STRING .) OF CHAR;
T_INTEGER_1 = (BYTE] -128..127;
T_INTEGLR_2 = [WORD] -32768..32767;

=

T_VARIANT_VALUE ARRAY(. 1..MAX_VARIANT_VALUE .) OF CHAR;
(* *)
ENTKEY ANYKEY;
LISTKEY ANYKEY;
(* *)
T_ATTRIBUTE_VALUE RECORD

5-12

CI UM560240031U
July 1989

CASE INTEGER OF

0 : (AS_VARIANT : T_variant_value);
1 : (AS_INTEGER_1 : T Integer_1);
2 : (AS_INTEGER_2 : T _Integer_2)
3 : (AS_INTEGER_4 : Integer);
4 : (AS_REAL_4 ¢ REAL);
S : (AS_REAL_8 + DOUBLE)
6 : (AS_FIXED_STRING : T_FIXED_STRING);
7 : (AS_LOGICAL : BOOLEAN)
8 : (AS_ENUMERATIOR :+ T_ENUMERATION);
9 : (AS_ENIKEY : ENTKEY);

END

Var
END_OF_STRING : [UNSAFE] CHAR : = XX/00';

The formal declarations for the interface routines are also contained in
the NVI include files named for the routines.

An application program needs to open a file for reading the GMAP Data
Dictionary as follows:

Open (File_Variable := DDFILE, History := READONLY, Access_Method := DIRECT,
File_Name := /[GMAP.V33.DDFILS]GMAPDDD.DAT', Error := MESSAGE);

Open (File_Variable := DDINX, History := READONLY,
File_Name := *([GMAP.V33.DDFILS]GMAPDDI.DAT', Error := MESSAGE);

For PASCAL programs, these local variables need to be declared as follows:

VAR
DDFILE : [Common]TEXT;
DDINX : (Common])TEXT;
5.6.3 Linkage Considerations
The NVI consists of subprograms that have been compiled and inserted into
an OLB/Library. The subprograms may be incorporated into an application
program by the appropriate data definition statement and a linker control
statement containing the following:
[GMAP.V33.NVIOLB]NVIOBJ.OLB/Library

(GMAP.V33,MASOLB]MAS30BJ.OLB/Library

5-13

CI UM560240031U
July 1989

5.6.4 Processing Consideratjons

The NVI will automatically retrieve run-time subschema definitions from
the GMAP Data Dictionary files.

5-14

Cl UM560240031U
July 1989

APPENDIX A
MODEL ACCESS SOFIWARE (MAS) CALLING PARAMETER TYPE IRDEX

Routine Calling Sequence

MABRST (ext_ret_code)
MACPDT (anykey, namtyp, integer, ext_ret_code)

MAEA (anykey, ext_ret_code)
MAEAI (anykey, ext_ret_code)
MAEAV (entkey, integer, ext_ret_code)
MAEC (anykey, listkey, ext_ret_code)
MAECI (anykey, listkey, ext_ret_code)

MAECIK (anykey, ord_kind, listkey, ext_ret_code)

MAECMP (entkey, listkey, ext_ret_code)

MAECQY (entkey, entkey, integer, ext_ret_code)

MAECR (entblock, anykey, entkey, ext_ret_code)

MAECRN (entdata, anykey, entkey, integer, ext_ret_code)

MAECTIK (integer, ext_ret_code)

MAECXQ (anykey, blkdata, routine, listkey, ext_ret_code,
ext_ret_code)

MAED (anykey, listkey, ext_ret_code)
MAEDI (anykey, listkey, ext_ret_code)
MAEDT (anykey, listkey, listkey, ext_ret_code)

MAEDTI (anykey, listkey, listkey, ext_ret_code)
MAEGKN (entkey, integer, ext_ret_code)

MAEGTK (entkey, entblock, ext_ret_code)

MAEKND (integer, ord_kind, ext_ret_code)

MAERST (namtyp, ext_ret_code)

MAESCI (anykey, integer ext_ret_code)

MAESVL (entkey, integer, ext_ret_code)

MAESWA (ext_ret_code)

MAESWT (anykey, integer, ext_ret_code)

MAEU (anykey, listkey, ext_ret_code)
MAEUD (entkey, entblock, ext_ret_code)
MAEUI (anykey, listkey, ext_ret_code)

MAEUIK (anykey, ord_kind, listkey, ext_ret_code)

MAEUSR (entkey, integer, ext_ret_code)

MAEUXQ (anykey, blkdata, routine, listkey, ext_ret_code,
ext_ret_code)

MAEXEQ (anykey, blkdata, routine, ext_ret_code, ext_ret_code)

MAINIT (ext_ret_code)

MAKCNT (integer, integer, ext_ret_code)

MAKILL (ext_ret_code)

MAKXEQ (anykey, variant, entry point, integer,
integer)

Al

CI UM560240031U
July 1989

APPENDIX A (contd.)

Routine Calling Segquence
MAL (listkey, ext_ret_code)

MALAND (anykey, anykey, listkey, ext_ret_code)
MALATC (anykey, anykey, ext_ret_code)
MALCPY (l1istkey, listkey, ext_ret_code)

MALD (listkey, ext_ret_code)
MALDA (ext_ret_code)
MALDI (anykey, ext_ret_code)

MALFND (anykey, entkey, integer, integer, ext_ret_code)
MALGTK (anykey, integer, entkey, ext_ret_code)
MALINS (anykey, anykey, integer, ext_ret_code)

MALK (ord_kind, listkey, ext_ret_code)

MALKC (anykey, ord_kind, listkey, ext_ret_code)
MALKL (anykey, ord_kind, listkey, ext_ret_code)
MALKU (anykey, ord_kind, listkey, ext_ret_code)
MALN (integer, listkey, ext_ret_code)

MALNO (anykey, integer, ext_ret_code)

MALNOT (anykey, anykey, listkey, ext_ret_code)

MALOCK (listkey, integer, ext_ret_code)

MALOR (anykey, anykey, listkey, ext_ret_code)

MALRD (anykey, entkey, ext_ret_code)

MALRDE (listkey, ext_ret_code)

MALREP (anykey, anykey, ext_ret_code)

MALRMV (anykey, integer, ext_ret_code)

MALROR (anykey, ext_ret_code)

MALRPL (anykey, entkey, integer, ext_ret_code)

MALRRI (anykey, ext_ret_code)

(MALRORI)

MALRST (listkey, integer)

MALRVS (anykey, ext_ret_code)

MALSRT (anykey, routine, ext_ret_code)

MALSTF (anykey, ext_ret_code)

MALSTR (anykey, ext_ret_code)

MALXEQ (anykey, blkdata, routine, listkey, ext_ret_code,
ext_ret_code)

MAQURY (entkey, namtyp, integer, ext_ret_code)

MARDLT (ord_kind, integer)

MARSGT (ord_kind, T_schema_pointer, integer)

MASMSZ (integer, integer, ext_ret_code)

MAUPDT (anykey, namtyp, integer, ext_ret_code)

MIDBD (anykey, integer)
MIDBRV (anykey, position, integer)
MRSCR (ord_kind, integer, T_schema_pointer, integer)

CI UM560240031U
July 1989

APPERDIX B
ALPHABETICAL MODEL ACCESS SOFTWARE (MAS) ROUTINE INDEX

Routine Description

MABRST Reset process and application flags

- MACPDT Update Constituent SYSUSE flag

MAEA Activate an entity or list of entities
* MAEAI Activate an entity or list of entities inclusively
. MAEAV Find value of entity activation setting
. MAEC Create list of constituents

MAECI Create list of inclusive constituents

. MAECIK Create list of inclusive constituents by kind
- MAECMP Create a list of constituents that compress

- MAECQY Determine if user compresses a constituent

+ MAECR Create an entity

+ MAECRN Create entity with constituent list size

MAECTK Get number of different kinds in working-form model
MAECXQ Process constituents via an application defined

procedure
- MAED Delete an emtity or list of entities
+ MAEDI Delete an emtity or list of entities inclusively
MAEDT Delete test an entity or list of entities

- MAEDTI Delete test an entity or list of entities inclusively

MAEGKN Get kind value of an entity

- MAEGTK Get entity ADB
+ MAEKND Get kind value at specified position in kind list
- MAERST Set application flag in all entities in model to "off"

”

-

MAESCI Set or reset process flag for inclusive constituents
MAESVL Find binary switch setting of an entity

+ MAESWA Set all entities binary switch setting to “off"
* MAESWT Set binary switch in an entity or list of entities

+ MAEU Create list of users
MAEUD Update entity ADB
+ MAEUI Create list of users inclusively

: MAEUIK Create list of users inclusively by kind

MAEUSR Determine if an entity has any users

MAEUXQ Process users via an application defined procedure
MAEXEQ Execute procedure on an entity or list of entities
MAINIT Initialize the working-form model

MAKCNT Determine number of entities in model with specified kind
MAKILL Delete the current working-form model

MAKXEQ Execute procedure on all entities of specified kind

- MAL Create an empty list
- MALAND "And" of two list

B-1

CI UM560240031U
July 1989

APPENDIX B (contd.)

Description

MALATC

+ MALCPY
© MALD

- MALDA
* MALDI

- MALGTK

-

MALINS

. MALKC

- MALNO

MALNOT

- MALOCK
- MALOR

MALRD

+ MALRDE
- MALREP

MALRMV

- MALROR

MALRPL
MALRRI

- MALRST
. MALRVS
- MALSRT

MALSTF

- MALSTR
+ MALXEQ

MAQURY

- MARDLT
- MARSGT

MASMSZ
MAUPDT

MIDBD

Attach entity or list of entities to entity or list
Make a copy of a list

Delete a list

Delete all lists in the working-form model

Delete a 1list and all lists after it

Find position of an entity in a list

Get the Nth entity from a list

Insert entity or list of entities into a list

Create list of an entities of specified kind

Create list of entities of a kind from constituents of
another list

Create list of an entities of specified kind which
are found within another list

Create list of entities of a kind from users of another
list

Create an empty list of specified size

Count entities in a list

"Not" of two lists

Set the list lock flag

"0r" of two lists

Read next entry in list

Remove duplicate entities from list

Replace list of entities

Remove entity or list of entities

Sort entities in direct user to constituent order
Replace entity or list of entities

Sort entities in inclusive user to constituent order
Reset an application list

Reverse the order of a list

Sort entities via an application defined procedure
Set flag to read in forward direction

Set flag to read in reverse direction

Execute procedure on entity or list of entities
Determine value of application flag for given entity
Delete the run-time schema for a given entity kind
Retrieve the run-time subschema for a given entity kind
Find actual model used space and model free space
Update value of application flag of entity or

1ist of entities

Delete an entity or list of entities, but do not
consider thLe delete rules

Routine

CI UMS560240031U
July 1989

APPENDIX B (contd.)

Description

¢« MIDBRV

- MRSCR

Remove an entity from the constituent list or remove

an entity from a list of entities. Delete if marked
for delete.

Create a run-time subschema for a given entity kind

B-3

I ———

APPENDIX C

Cl UM560240031U
July 1989

MODEL ACCESS SOFTWARE (MAS) RETURN CODE INDEX

Error type

NO_ERRORS_DETECTED
BAD_ENT_KIND
INVALID_CREATE
CANT_CREATE_LIST
MAS_INIT_FAILED
INVALID_UPDATE
CANT_UPDATE_ENT
CANT_CREATE_ENT
CART_VERIFY_CORNECT
INVALID_CONNECTION
CANT_CONNECT
ABSENT_INPUT
INVALID_GET
NDS_OP_COMPLETE
BAD_LIST_POSITION
MAXIMUM_LIST_SIZE
BAD_LIST_MOVE_COUNT
BAD_LIST_REFERENCE
BAD_ENT_KEY
DUPLICATE_SCH
DUMP_ERROR

BAD_ENT_SIZE
BAD_SCH_KIND
PROC_CODE_ERROR
PROC_OUT_OF_RANGE
NO_MATCH_FOUND
DUPS_NOT_REMOVED
INVALID_DELETE
BAD_ERTITY_ON_USER_LIST
BAD_DELETE_KEY
EMPTY_MODEL
ARG_OUT_OF_RANGE
INVALID_CRB_POSITION
CRB_ENTRY_NOT_FOUND
INVALID_FLAG_NAME
CANT_MARK_ENTITY_DELETE
SIZE_NOT_CARE_ENOUGH
RTS_NOT_IN_WORKING_FORM
CORE_NOT_AVAILABLE
NOT_ENOUGH_CORE_FOR_INIT
ABSOLUTELY_NO_MORE_CORE

Code

VOO WNMDdDWNMO

WWRRNNONORNNNN D e b s s s b
33'&'Sgggggwoomuo\m»wuwowmuo‘m:»wuv—-o

C1

Error type

MAINIT_ALREADY_DONE
ROLE_DOES_NOT_MATCH
ENTITY_NOT_FOUND_LIST

C1 UM560240031U
July 1989

APPENDIX C (contd.)

Code

41
42
43

C-2

CI UMS560240031U
July 1989

APPENDIX C (contd.)

MODEL ACCESS SOFTWARE RETURN CODE INDEX

Warning type Code
OKW 0
NO_SUCH_SCH -1
PROC_WARNING_CODE -2
EMPTY_DELETE_LIST -3
EMPTY_EXCEPTION_LIST -4
END_OF_LIST -5
NO_LIST_CREATED -6
EMPTY_MARK_LIST -7
NO_LIST_GIVEN =11
C-3
CONTROL/2S

CI UM560240031U
July 1989

APPENDIX D
GENERAL TECHNIQUES/GUIDELINES

Avoid creating long lists of entities:
~Lists are processed sequentially
~Lists use model space

Do not use ENTKEY as a memory address:
-ENTKEY does not address the attribute data block of the entity

Avoid "nil” keys:
—Abend or nil pointer checking errors may be caused

Delete application lists when no longer needed:
-Application lists use memory
~Application lists slow deletion of entities

Always test the Model Access Software (MAS) interface return code:
-RC = 0 normal return
~RC ¢ 0 warning message
-RC > O critical error
Reset the process bit to "off" when it is no longer needed.
Define the KIND and LENGTH fields in the ADB.

wWhen MALRD is used in conjunction with one of the following interface
routines:

MAED MALINS
MAEDI MALRMV
MAL

the position of sequential reading is incremented/decremented if an
interface function modifies the 1list,

Do not use MALGTK and one of the above routines because the local
variable position cannot be adjusted by the MAS package.

CI UM560240031U
July 1989

APPENDIX D (contd.)

For example:

VAR NUM_IN_LIST: = INTEGER

BEGIN
FOR I = 1 TO NUM_IN_LIST Do
MALGTK (LISTKEY, NUM_IN_LIST, ENIKEY1):
MAED (ENTKEY1l, LISTX):
END:

As each entity is deleted, it is removed from the LISTKEY list, but
I is not adjusted.

With the exception of MAL and MALK, empty lists will not be created. If
an interface function has an output LISTKEY and the list is empty, the

list will not be created and the LISTKEY will be NIL. A warning retumrn
code will indicate this situation.

D-2

CI UM560240031U
July 1989

APPENDIX E
RUR-TIME ENVIRONMENT

NTRODUCTION

The Model Access Software (MAS) consists of a set of PASCAL procedures
that provides an interface to the working form model for application
programs. When the application programs are written in a language other
than PASCAL, the run-time environment must satisfy the interlanguage
communication requirements of all the languages involved. This appendix
discusses the MAS interlanguage environment conventions and the composition
of the PASCAL dynamic storage areas. Examples are given for a FORTRAN
program that uses MAS routines,

R Co S

When the MAS subprograms were compiled, they were defined as PROCEDUREs
using SUBPROGRAM declarations. The subprogram declaration is an extension
to IBM Pascal that allows a PASCAL procedure to be called from any
language. The subprogram declaration supplies special code at compile
time. At run-time, this code determines the nature of the calling program.
For non-PASCAL calls, two macros are invoked: Prolog and Epilog. Before
the procedure executes, Proleg locates the PASCAL Communication Work Area
(PCWA) as vell as the main and local Dynamic Storage Areas (DSA) and
establishes the PASCAL register conventions. On exit, the Epilog macro
restores the register conventions of the calling program,

The effect of this method is that no special action is required by the
calling program, regardless of its language.

The SUBPROGRAM declaration may also be applied to application
procedures, which may then be called from, and make calls to, routines of
any language. This method is limited to PASCAL PROCEDURES and does not
apply to PASCAL FUNCTIONS.

G G 0
The preferred (and easiest) approach is to insert the entire application

into a PASCAL program. This method, shown in Figure E-1, assures correct
error handling.

Cl UM560240031U
July 1989

PASCAL

FORTRAN

FORTRAN

Figure E-1. PASCAL Environment

An alternate approach, illustrated in Figure E-2, is to insert the
portion of the application that makes the MAS calls into a PASCAL procedure
that is declared MAIN. The error handling capability, however, may be
limited in this method. KNote that the model created within the scope of the
MAIN PASCAL procedure is active only during the execution of the MAIN
procedure; new models may be created in subsequent calls to a similarly
declared MAIN procedure. Upon termination of the last call to a PASCAL
MAIN, the procedure PSCLHX should be called to terminate the PASCAL run-time
environment.

Examples of the PASCAL source and link-edit instructions are included at

the end of this appendix. Figure E-3 i{llustrates the PASCAL dynamic storage
area stack.

E-2

CI UM560240031U
July 1989

FORTRAN

MAIN

FORTRAN

MAS

FORTRAN

PSCLHX

Figure E-2. MAIN Procedure

E-3

Cl UM560240031U
July 1989

GISTER CO ONS

The interlanguage environment establishes the correct register
conventions automatically. The following information is included for use
from the IBM TEST mode.

Register PASCAL HNon-PASCAL
15 Branch address Branch address
14 Return address Return address
13 Local DSA address (1) Save area address
12 PCWA address
11 Main DSA address
1l Address of parameter Address of parameter
list (2) (3) 1list
0 (2) Function value

NOTES: (1) The save area is the first entry in the local DSA, which is
established by a PASCAL caller.

(2) The function value for PASCAL is referred to by the first
entry in the parameter list. PASCAL input parameters for a
function are referred to as starting with the second entry in
the parameter list.

(3) The parameter list contains addresses of parameters except for
pass-by-value of scalars, pointers, or sets, in which case the
parameter list contains the actual value.

S C STO
The dynamic storage area of the PASCAL main program contains global
variables (including any commons). Each PASCAL procedure invoked has a

local dynamic storage area containing local variables. The dynamic storage
areas are contained in a LIFO stack.

In general, the DSA of a routine consists of five sections:
(1) The local save area (144),
(2) Parameters passed in by the caller.
(3) Local variables required by the routine.
(4) A save area required by any routine that will be called.

(5) Storage for the largest parameter list to be built for a call.

E-4

I .

CI UM560240031U
July 1989

Sections 1 and 2 are allocated by the calling routine; Sections 3, 4,
and 5 are allocated by the Prolog of the called routine.

Every DSA is at least 144 bytes long. This is the storage required by
PASCAL/VS for a save area. The local variables and parameters of the
routine are mapped within the DSA starting at offset 144.

Upon entering a routine, Register 1 points 144 bytes into the DSA of the
routine, which is where the parameters passed in by the caller reside.

Upon invocation, Register 13 points to the base of the DSA of the
caller, which is where the save area of the caller is located. Figure E-3
illustrates the condition of the stack and relevant registers immediately
upon the start of the routine.

Start of DSA of Call
REG 13 Caller's Save Area art o © o
Ccller'.s Local
To Replace REG 13 Variables sg;'thL&iA
Local Save Area
(144 Bytes)
REG 1 144 Bytes Into DSA
Parometers
Top of Stack —= ——————————— Storage Not Yet
Local Variables To Be Allocated
Save Areq of Any Start of D
Routines Yet To Be Called
To Be Invoked ./)
REG 1 Set Here for Calls —e= | =————— — = —{ 144 Bytes Into This DSA
Parameter List To Be ™\
Built for Calls
to Other Routines
Next Stack Top —== b ———c— - —— — —

Figure E-3. PASCAL Pynanic Storage Area Stack

E-5

CONTROL/208

EXAMPLES

EXAMPLE 1:

PASCAL PROGRAM
PROGRAM PASMAIN;
PROCEDURE MAIN; FORTRAN;
BEGIN

MAIN;

END.

LINKEDIT INSTRUCTIONS
INCLUDE APLLIB(PASMAIR)
INCLUDE APLLIB(APL)

INCLUDE MASLIB(MAS)
ENTRY PASMAIN

Cl UM560240031U
July 1989

PASCAL PROGRAM (PASMAIN) THAT INVOKES FORTRAN MAIN

Invoke FORTRAN main.

FORTRAN main object,
1ist of objects including FORTRAN main, or
LOAD module including FORTRAN main.

where SYSLIB allocation includes SYS1.PASCLIB.

EXAMPLE 2:

PASCAL PROCEDURE (PASSUB) INVOKED BY FORTRAN MAIN THAT INVOKES

FORTRAN SUBROUTINE (FORSUB)

oc
SEGMENT PASSUB;

PROCEDURE PASSUB (....);MAIN;

PROCEDURE PASSUB;

FORTRAN MAIN may pass parameters to
the PASCAL subroutine.

PROCEDURE FORSUB(....);FORTRAN; PASCAL MAIN may pass parameters to the

BEGIN
FORSUB(....);

end;

N 0G

CALL PASSUB(....)
CALL PSCLHX

.
.

.

FORTRAN MAIN.

Invokes FORTRAN subroutine that calls
MAS.

E-6

D STRUCTIONS
INCLUDE APLLIB(APL)

INCLUDE APLLIB(PASSUB)
INCLUDE MASLIB(MAS)
ENTRY APL

RAME APL

CI UM560240031U
July 1989

List of objects including FORTRAN MAIN
or LOAD module including FORTRAN MAIN,

where SYSLIB allocation includes SY¥YS1.PASCLIB.

CI UM560240031U
July 1989

APPERDIX F
SAMPLE PROGRAMS

RODUCT]IO

A series of sample programs, presented in Table F-1, were written by an
MDC development programmer to emulate the MDC CAD system., They are
reprinted here in hopes that other programmers can gain insight into the
easiest and most efficient way to use each of the Model Access Software
routines.

The routine descriptions in the earlier parts of this manual are

cross-referenced to the sample program in which the Model Access Software
routine 1s used (routines are all written in PASCAL):

IABLE F-1
SAMPLE PROGRAMS

MAS APPLICATION
DESCRIPTION ROUTINES ROUTINE
USED
Defines System Type and Constant Declarations. ENRTTYP
Entity Type Definitions. ENTDEF
Model a Line for Display. MAL ,MALATC, MODLN
MAECR
Retrieve Entity's Type, Special Code, and Label. MAEGTK CADENT
Retrieve Entity Key and Data from Pick List. MALNO, PLQRY
MALGIK

F-1

Cl UM560240031U

July 1989
TABLE F-1 (contd.)
Implement Delayed "Delete" Operation. MAEGTK, RMBLK
MAECI,
MALNO,MAEU,
MALGTK
Reject Changes to Attributes, MAECR,MAL, VCASAV
MALATC
Checks if the KIND is between a high and a low MALXEQ KNDRNG
bouncary.
Retrieves the radius of a PRS. MAEXEQ R$RCRD

F.2

S

¢]e]

ENTTYPE - Sample program

TYPE

CI UM560240031U
July 1989

defines system type and constant declarations.

UNSIGNED_INT1 = PACKED 0..255;

SIGNED_INT1 = PACKED -128..127;
UNSIGNED_INT2 = PACKED 0..65535;

SIGNED_INT2 = PACKED -32768..32767;

COORD = (X,Y,2);

VECTOR = ARRAY(.COORD.) OF REAL;
SHIVECTOR = ARRAY(.COORD,) OF SHORTREAL;
TWO_PNTS = ARRAY(.1l..2.) OF VECIOR;

INT2 = ARRAY(.1..2.) OF INTEGER;
INT3 = ARRAY(.1..3.) OF INRTEGER;
INT4 = ARRAY(.l..4.) OF INTEGER;
SHIREAL2 = ARRAY(.1..2.) OF SHORTREAL;
SHTREAL3 = ARRAY(.1..3.) OF SHORTREAL;
REAL2 = ARRAY(.1..2.) OF REAL;

REAL3 = ARRAY(.l..3.) OF REAL;

CHAR2 = PACKED ARRAY(.1..2.) OF CHAR;
CHAR4 = PACKED ARRAY(.1l..4.) OF CHAR;
CHARS6 = PACKED ARRAY(.1..6.) OF CHAR;
CHARS = PACKED ARRAY(.1..8.) OF CHAR;

PDDI Access Software_ENTITY_TYPE = INTEGER;
CADD_ENTITY_TYPE = INTEGER;
DATA_TYPE = INTEGER;

S E_PROG

CI UM560240031U
July 1989

ENTDEF - Sample program shows entity type definitions.

TYPE
ANYKEY
LISTKEY
ENTKEY

EXT_RET_CODE

ENTKIND

ORD_KIND

Hwnan

INTEGER;
ANYKEY;
ANYKEY;
INTEGER;
INTEGER;
INTEGER;

T_SYS = (CADD, IDBPDDI Access Software);

T_HEADER = RECORD

KIRD s ERTKIND;
SIZE s 0..4194303;
LABEL : CHAR8; --> OVER
DSP_TYPE ¢ INTEGER;
SUBTYPE ¢ INTEGER;
VERSION s INTEGER;
END;
(*
ENTITY DATA RECORDS
*)
PNTDATA = RECORD
UDB ¢ T_HEADER;
PT ¢ VECTOR;
END;
LINDATA = RECORD
uDB s T_HEADER;
END;
ARCDATA - RECORD
UDB s T_HEADER;
MIDPRT ¢ VECTOR;
END;
CRLDATA = RECORD
UDB : T_HEADER;
PT1 : VECTOR;
PT2 ¢ VECTOR;
PT3 ¢ VECTOR
END;
F-4

C1 UM560240031U
July 1989

EF o] c
PLNDATA = RECORD
UDB ¢ T_HEADER;
SYMBOL ¢ VECTOR;
NORMAL : VECTOR;
END;
PICDATA = RECORD
UDB ¢ T_HEADER;
PICKPNT : SHIVECTOR;
END;

ENTBLOCK = RECORD
CASE ENTITY_TYPE OF

POINT ¢ (PNT : PRTDATA);
LINE ¢ (LIN : LINDATA);
PLANE ¢ (PLN : PLNDATA);
ARC ¢ (ARC : ARCDATA);
CIRCLE : (CRL ¢ CRLDATA);

PICK_ENTITY : (PIC : PICDATA);
END;

F-5

Cl UM560240031U

July 1989
ODLN SAMP ROG
MODLN - Sample program to model a line for display.
CA DESCRIPTION OF ARGUMENIS
c INPUT
c PNTRS — AN ARRAY CORTAINING THE CORRELATION OF
THE START AND END POINTS OF THE LINE
c DSPTYPE - CADD DISPLAY TYPE
c = 1, SOLID LINE
c = 2, DASHED LINE
c
c OUTPUT
c IRC - RETURN CODE
c = 0, NORMAL RETURN
c = 18, INVALID INPUT DATA
c = 34, ERROR IN CREATION
c
CC COMMONS
c DGRPS2 - PROVIDE SYSTEM WORK AREAS
*)
REF
DGRPS2 : T_DGRPS2;
CORST
TICKMARK = 99;
TYPE

LIN_SPCODE = (NORMAL_LINE, TICK_MARK);
LIN_DSPTYPE = (DUMMY, SOLID, DASH, CENTER, PHANTOM);

VAR

SPECIAL_CODE : INTEGER;
DISPLAY_TYPE : INTEGER;
1 : INTEGER;
NEW_LINE : ENTBLOCK;
NEW_LINE_LABEL: CHARS;

KEYLC : LISTKEY;
KEYE_LN : LISTKEY;

F-6

ODLN

CI UM560240031U
July 1989

0 co
BEGIN (* MODLN STARTS HERE ®)
(*
CHECK IF DUPLICATE POINTS

*)

IF (PNTRS(.1.) = PNTRS(.2.))

THEN

IRC := 18
ELSE
BEGIN

(* CONVERT CADD TYPE DESIGNATION TO PDDI Access Software EQUIV
CVIPSC(CADD_LINE, SPECIAL_CODE, NEW_LINE.LIN.UDB.KIND,
NEW_LINE.LIN.UDB.SUBTYPE, IDBPDDI Access Software, IRC);
(* GET A LABEL FOR THE NEW LINE

LDLABL(CADD_LINE, SPECIAL_CODE, NEW_LINE_LABEL, IRC);

IF IRC = 0
THEN
BEGIN
(* LOAD THE LINE BLOCK
*)
WITH NEW LINE.LIN.UDB DO
BEGIN
SIZE := UDBSIZ(PDDI Access Software_LINE); (* SIZE OF
ENTITY BLOCK =)
LABEL t= NEW_LINE_LABEL;
DSP_TYPE := DISPLAY_TYPE;
END;
(*
CREATE LINE WITH CONSTL
*)

MAL(KEYLC, IRC); (*CREATE EMPTY LIST*)
FORI :=1TO0 2 DO
MALATC(KEYLC, PNTRS(.I.), IRC); (* ADD EACH END POINT TO LIST *)
MAECR(NEW_LINE, KEYLC, KEYE_LN, IRC); (* MODEL THE ENTITY *)
IF IRC = 0
THEN
(* RECORD THE CREATE FOR VERSION CONTROL
*)
VCCREA(KEYE_LN, IRC);

END; (* END OF CHECKING IRC FROM "LDLABL *)
END;(* END OF CHECKING DUPLICATE POINTERS *)

END; (*END OT' MODLN#*)

F-7

- o e p————

CADENT
entity.

CI UMS560240031U
July 1989

S 0G

- Sample program to retrieve the type, special code, and label of an

CA DESCRIPTION OF ARGUMENTS
INPUT
KEYE - KEY OF THE ERTITY

OUTPUT
ENT_TYPE - ENTITY TYPE
SP_CODE - SPECIAL CODE
ENT_LABEL - ENTITY LABEL

rO00000O000O0

)

VAR
I, IRC : INTEGER;
ENTITY : ENTBLOCK;

BEGIN (* CADENT STARTS HERE «)
(> RETRIEVE THE ENTITY ATTRIBUTE BLOCK FROM PDDI
Software %)
MAEGTK(KEYE ,ENTITY, IRC);
(= TRANSFORM PDDI Access Software XIND TO TYPE
AND SPECIAL CODE =)
CVIPSC(ENTITY.PNT.UDB.KIND, ENTITY.PNT.UDB.SUBTYPE,
ENT_TYPE, SP CODE, CADD, IRC);
(% COPY LABEL OUT OF ENTITY BLOCK *)
LABEL(.I,) := ERTITY.PNT.UDB.LABEL ;
END; (*END OF CADENT *)

F-8

CI UM560240031U
July 1989

PLORY SAMPLE PROGRAM
PLQRY - Sample program retrieves an entity key and data from the pick list.

CA DESCRIPTION OF ARGUMENTS

c INPUT
C RUMPK - RUMBER OF PICKS DESIRED
c OUTPUT
c PIC_ERTITY ~ ATTRIBUTES OF THE PICK ENTITY
c PICKED_ENTITY - ATTRIBUTES OF THE PICKED ENTITY
c IRC - RETURN CODE
c = 0, NORMAL RETURN
c = 18, INVALID INPUT DATA
*)
VAR

PICK_LIST : LISTKEY;

PICK_COUNT : INTEGER;
XPAGE
BEGIN (* PLQRY STARTS HERE *)
(®

RETRIEVE THE PICK LIST AND COUNT THE NO OF PICKS

*)

PLKEY(PICK_LIST, IRC);
MALNO(PICK_LIST, PICK_COUNT, IRC);

IF (PICK_COUNT > 0) AND (PICK_COUNT <= NUMPK)

THEN
BEGIN
(t
RETRIEVE THE PICK ENTITY AND PICKED ERTITY
*)
MALGTK(PICK_LIST, NUMPK, PIC_ENTITY, IRC);
MALGTK(PIC_KEY, 1, PICKED_KEY, IRC);
END
ELSE

- IRC 3= 18;

END; (* END OF PLQRY *)

F-9

C1 UM560240031U
July 1989

RMBLK SAMPLE PROGRAM

RMBLK - Sample program to implement a delayed "DELETE" operation. It can be
reversed by invoking the "REJECI" function.
CA DESCRIPTION OF ARGUMENIS

c INPUT
c KEYE - KEY OF THE ENTITY TO BE DELETED
c
c OUTPUT
c IRC - RETURN CODE
c = 0, NORMAL RETURN
c = 18, INVALID INPUT DATA
®)
VAR
NUM_OF_CNSTL : INTEGER;
FUM_OF_USERS : INTEGER;
COUNTER : INTEGER;
CNSTL : LISTKEY;
POINT_USERS : LISTKEY;
ENT_HEADER : ENTHEAD;
DEL_DISPLAY : BOOLEAN;
ENTITY : ENTBLOCK;
BEGIN (* RMBLK STARTS HERE *)
(t
ADD THE ENTITY TO BE DELETED TO THE ACCEPT LIST
*)
VCDEL(KEYE, IRC);
(t
DELETE THE DISPLAY OF THE ENTITY
*)
DELEDSP(KEYE) ;
(t‘
RETRIEVE THE ENTITY TO BE DELETED
*)
MAEGTK(KEYE, ENTITY, IRC);
(t
IF PLURAL ERTITY THEN FIND THE CNSTL
AND OMIT THE DISPLAY OF CNSTL
*)

IF (ENTITY.PRT.HEADER.KIND = PDDI Access Software_PCPATCH)
OR ((ENTITY.PNT.HEADER.KIND = PDDI Access Software_GROUP)
OR (ENTITY.PNT.HEADER.KIND = PDDI Access Software_BOQUNDED_PLANE))

F-10

Cl UM560240031U
July 1989

RMBLK SAMPLE PROGRAM (CONTINUED)

THEN
BEGIN
MAECI(KEYE, CNSTL, IRC);
MALNO(CNSTL, NUM OF CNSTL, IRC);
FOR COUNTER := 1 TO NUM_OF_CNSTL DO
BEGIN
DEL_DISPLAY := TRUE;
MALGTK(CNSTL, COUNTER, ENT_HEADER, IRC);

(*
IF CONSTITUENT IS A POINT THEN IF THERE
WERE USERS THEN LEAVE IT ALONE
*)
IF ENT_HEADER.KIND = PDDI Access Software_ POINT
THEN
BEGIN

MAEU(END_HEADER.KEY, POINT_USERS, IRC);
MALRO(POQINT_USERS, RUM_OF_USERS, IRC);
IF NUM_OF_USERS > 0
THEN
DEL_DISPLAY := FALSE;
ERD; (* ERDIF *)
IF DEL_DISPLAY
THER
DELDSP(ENT_HEADER.KEY);
ENRD;(* END OF DO LOOP %)
END; (* ENDIF *)

END; (* END OF RMBLK %)

F-11 .

CI UM560240031U
July 1989

VCASAV_SAMPLE PROGRAM
VCASAV - Sample program provides for rejecting changes to attributes.

CA DESCRIPTION OF ARGUMENIS

c INPUT
c OLDENT - OLD ENTITY BLOCK
c
c OUTPUT
c IRC - RETURN CODE
c = 0, NORMAL RETURN
c = 18, INVALID INPUT DATA
*)
VAR
OPERATION_ENTKEY : ENTKEY;
KEYE : ENTKEY;
REJECT_LIST,CNSTL: LISTKEY;
NEWENT : ENTBLOCK;
BEGIN (* VCASAV STARTS HERE *)
(t
GET THE ATTRIBUTE OF THE OLD ENTITY AND
CREATE A NEW ENTITY WITH THAT ATTRIBUTE ONLY
*)

REWENRT := OLDENT;

NEWENT .RPA.UDB.KIND := 0;

CNSTL := 0;

MAECR(KEYE, REWENRT, CRSTL, IRC);
(%

*)

CEEATE AN EMPTY LIST AND ADD THE NEWENT TO IT

MAL(CRSTL, IRC);
MALATC(CNRSTL, KEYE, IRC);

(»
MODEL THE "REPLACE ATTRIBUTE" OPERATION ENTITY
*)
MODOP(ORD(REPLACE_ATTRIBUTE_OP_), CNRSTL, OPERATION_ENTKEY, IRC);
(&
RETRIEVE THE REJECT LIST AND ADD THE NEWLY
CREATED OPERATION ENTITY TO THE REJECT LIST
*)

VCRKEY(REJECT_LIST, IRC);
MALATC(REJECT_LIST, OPERATION_ENTKEY, IRC);

END; (* END OF VCASAV %)

F12

KNDRNG SAMPLE PROGRAM

KNDRNG - Sample program checks if the KIND is between a
boundary.

PROCEDURE KNDRNG:

REF
KNDRGI ¢ ROUTINE;
VAR
DATA :
JRC :

BLKDATA;
INTEGER;

BEGIN (* KNDRNG *)
IF KEYL <> 0 THER BEGIN
DATA.LOWKIND := LOWKIND;
DATA.HIGHKIND := HIGHKIND;

Cl UM560240031U
July 1989

high and a low

MALXEQ(KEYL, DATA. KNDRGI, OUTLIST, JRC, IRC);

END ELSE
IRC := 1;
END (* KNDRNG *)

PROCEDURE KNDRGI(CONST KEYENT : ENTKEY;
VAR ENTBLK : ENTBLOCK;
VAR DATA s BLKDATA;
VAR IRC ¢+ INTEGER);

SUBPROGRAM
PROCEDURE KNDRGI
BEGIR (®* KNDRGI)
IF (ENTBLK.KIND >= DATA.LOWKIND)
AND (ENDBLK.KIND <= DATA.HIGHKIND)

IRC := 1 (* PUT IT ON THE OUTPUT LIST *)
ELSE

THEN

IRC := 2; (* DON'T PUT IT ON THE OUTPUT LIST *)

END; (* KNDRGI =)

L2

CI UM560240031U
July 1989

RSRCRD SAMPLE PROGRAM

R$RCRD - Sample program retrieves the radius of a PRS. This sample program
is written in FORTRAN.

FUNCTION R$RCRD(ICV)
REAL*4 R$RCRD

REAL®*8 RADIUS

INTEGER*4 IRC,IIRC,I,ICV
COMMON /PRSRAD/PRSRAD

c
CALL MAEXEQ(ICV, RADIUS, PRSRAD, IRC, IIRC)
R$RCRD = RADIUS
c
RETURN
END

PROCEDURE PRSRAD(CORST KEYE : ERIKEY ;
VAR ENTDATA : ENTBLOC H
VAR RADIUS : REAL ;
VAR IRC :+ INTEGER) ;

SUBPROGRAM

PROCEDURE PRSRAD ;

BEGIN

RADIUS := ENTDATA.PRS.RADIUS ;
END ;

F-14

